@@ -4,9 +4,7 @@ use crate::storage::Triples;
4
4
use oxrdf:: { NamedNode , Subject , Term } ;
5
5
use polars:: prelude:: { as_struct, by_name, col, concat, lit, IntoLazy , LazyFrame , UnionArgs } ;
6
6
use polars_core:: prelude:: { Column , DataFrame } ;
7
- use query_processing:: expressions:: {
8
- blank_node_enc, maybe_literal_enc, named_node_enc,
9
- } ;
7
+ use query_processing:: expressions:: { blank_node_enc, maybe_literal_enc, named_node_enc} ;
10
8
use query_processing:: type_constraints:: PossibleTypes ;
11
9
use representation:: cats:: { named_node_split_prefix, Cats } ;
12
10
use representation:: multitype:: all_multi_cols;
@@ -155,12 +153,8 @@ impl Triplestore {
155
153
include_transient : bool ,
156
154
) -> Result < SolutionMappings , SparqlError > {
157
155
let predicate_uris = predicate_uris. unwrap_or ( self . all_predicates ( ) ) ;
156
+
158
157
let mut sms = vec ! [ ] ;
159
- if let Some ( s) = & subject_keep_rename {
160
- if s == "b" {
161
- //panic!("Panik b multi");
162
- }
163
- }
164
158
if !( objects. is_some ( ) && objects. as_ref ( ) . unwrap ( ) . is_empty ( ) )
165
159
|| !( subjects. is_some ( ) && subjects. as_ref ( ) . unwrap ( ) . is_empty ( ) )
166
160
{
@@ -191,78 +185,6 @@ impl Triplestore {
191
185
let mut object_types = HashMap :: new ( ) ;
192
186
let mut accumulated_heights = 0usize ;
193
187
194
- // // This part is to work around a performance bug in Polars.
195
- // // Still present..
196
- // if predicate_uris_len > 1 && (subjects.is_some() || objects.is_some()) {
197
- // sms = sms
198
- // .into_par_iter()
199
- // .map(|sm| {
200
- // let HalfBakedSolutionMappings {
201
- // mut mappings,
202
- // verb,
203
- // subject_type,
204
- // object_type,
205
- // height_upper_bound: _,
206
- // } = sm;
207
- // if subject_type.is_some() {
208
- // mappings =
209
- // mappings.with_column(col(SUBJECT_COL_NAME).cast(DataType::String));
210
- // }
211
- // if let Some(object_type) = &object_type {
212
- // if object_type.is_lang_string() {
213
- // mappings = mappings.with_column(
214
- // as_struct(vec![
215
- // col(OBJECT_COL_NAME)
216
- // .struct_()
217
- // .field_by_name(LANG_STRING_VALUE_FIELD)
218
- // .cast(DataType::String)
219
- // .alias(LANG_STRING_VALUE_FIELD),
220
- // col(OBJECT_COL_NAME)
221
- // .struct_()
222
- // .field_by_name(LANG_STRING_LANG_FIELD)
223
- // .cast(DataType::String)
224
- // .alias(LANG_STRING_LANG_FIELD),
225
- // ])
226
- // .alias(OBJECT_COL_NAME),
227
- // )
228
- // } else if object_type.polars_data_type() == DataType::String {
229
- // mappings = mappings
230
- // .with_column(col(OBJECT_COL_NAME).cast(DataType::String));
231
- // }
232
- // }
233
- //
234
- // let df = mappings.collect().unwrap();
235
- // let height_upper_bound = df.height();
236
- // mappings = df.lazy();
237
- // let mut rdf_node_types = HashMap::new();
238
- // if let Some(subject_type) = &subject_type {
239
- // rdf_node_types.insert(
240
- // SUBJECT_COL_NAME.to_string(),
241
- // subject_type.clone().into_rdf_node_type(),
242
- // );
243
- // }
244
- // if let Some(object_type) = &object_type {
245
- // rdf_node_types.insert(
246
- // OBJECT_COL_NAME.to_string(),
247
- // object_type.clone().into_rdf_node_type(),
248
- // );
249
- // }
250
- // mappings = lf_columns_to_polars_categorical(
251
- // mappings,
252
- // &rdf_node_types,
253
- // CategoricalOrdering::Physical,
254
- // );
255
- //
256
- // HalfBakedSolutionMappings {
257
- // mappings,
258
- // verb,
259
- // subject_type,
260
- // object_type,
261
- // height_upper_bound,
262
- // }
263
- // })
264
- // .collect();
265
- // }
266
188
for HalfBakedSolutionMappings {
267
189
mut mappings,
268
190
verb,
0 commit comments