|
| 1 | +import argparse |
| 2 | +from transformers import AutoTokenizer |
| 3 | +import nltk |
| 4 | +import evaluate |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +import json |
| 8 | +import re |
| 9 | + |
| 10 | +import logging |
| 11 | +logging.basicConfig(level=logging.DEBUG) |
| 12 | +log = logging.getLogger("evaluate_accuracy.py") |
| 13 | + |
| 14 | +def get_args(): |
| 15 | + parser = argparse.ArgumentParser() |
| 16 | + parser.add_argument( |
| 17 | + "--checkpoint-path", |
| 18 | + required=True, |
| 19 | + help="Path to Mixtral-8x7b-Instruct checkpoint", |
| 20 | + ) |
| 21 | + parser.add_argument( |
| 22 | + "--mlperf-accuracy-file", |
| 23 | + required=True, |
| 24 | + help="path to mlperf_log_accuracy.json", |
| 25 | + ) |
| 26 | + parser.add_argument( |
| 27 | + "--dataset-file", |
| 28 | + required=True, |
| 29 | + help="path to processed validation dataset", |
| 30 | + ) |
| 31 | + parser.add_argument( |
| 32 | + "--n_workers", |
| 33 | + default=2, |
| 34 | + type=int, |
| 35 | + help="Number of workers used for the MBXP evaluation", |
| 36 | + ) |
| 37 | + parser.add_argument("--verbose", action="store_true", help="verbose messages") |
| 38 | + parser.add_argument( |
| 39 | + "--dtype", |
| 40 | + default="int64", |
| 41 | + help="dtype of the accuracy log", |
| 42 | + choices=["int32", "int64", "float"], |
| 43 | + ) |
| 44 | + args = parser.parse_args() |
| 45 | + return args |
| 46 | + |
| 47 | + |
| 48 | +def get_groundtruth(processed_dataset_file): |
| 49 | + data = pd.read_pickle(processed_dataset_file) |
| 50 | + return data |
| 51 | + |
| 52 | + |
| 53 | +# Functions for evaluating GSM8K |
| 54 | +def find_numbers(x: str) -> list[str]: |
| 55 | + """Finds all numbers in a string.""" |
| 56 | + # Search for number, possibly negative (hyphen), with thousand separators |
| 57 | + # (comma), and with a decimal point (period inbetween digits). |
| 58 | + numbers = re.compile( |
| 59 | + r"-?[\d,]*\.?\d+", |
| 60 | + re.MULTILINE | re.DOTALL | re.IGNORECASE, |
| 61 | + ).findall(x) |
| 62 | + return numbers |
| 63 | + |
| 64 | + |
| 65 | +def find_number(x: str, answer_delimiter: str = "The answer is") -> str: |
| 66 | + """Finds the most relevant number in a string.""" |
| 67 | + # If model uses the answer delimiter, then select the first number following |
| 68 | + # that format. |
| 69 | + if answer_delimiter in x: |
| 70 | + answer = x.split(answer_delimiter)[-1] |
| 71 | + numbers = find_numbers(answer) |
| 72 | + if numbers: |
| 73 | + return numbers[0] |
| 74 | + |
| 75 | + # In general, select the last number in the string. |
| 76 | + numbers = find_numbers(x) |
| 77 | + if numbers: |
| 78 | + return numbers[-1] |
| 79 | + return "" |
| 80 | + |
| 81 | + |
| 82 | +def maybe_remove_comma(x: str) -> str: |
| 83 | + # Example: 5,600 -> 5600 |
| 84 | + return x.replace(",", "") |
| 85 | + |
| 86 | + |
| 87 | +def try_float(x: str): |
| 88 | + try: |
| 89 | + ret = float(x) |
| 90 | + except BaseException: |
| 91 | + ret = None |
| 92 | + return ret |
| 93 | + |
| 94 | + |
| 95 | +# Functions for evaluating OpenOrca |
| 96 | + |
| 97 | + |
| 98 | +def postprocess_text(preds, targets): |
| 99 | + preds = [pred.strip() for pred in preds] |
| 100 | + targets = [target.strip() for target in targets] |
| 101 | + |
| 102 | + # rougeLSum expects newline after each sentence |
| 103 | + preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] |
| 104 | + targets = ["\n".join(nltk.sent_tokenize(target)) for target in targets] |
| 105 | + |
| 106 | + return preds, targets |
| 107 | + |
| 108 | + |
| 109 | +# Functions for MBXP |
| 110 | + |
| 111 | + |
| 112 | +def create_mbxp_dict(row, response): |
| 113 | + lang, entry_point = row["id"].split("_", 1) |
| 114 | + return { |
| 115 | + "lang": lang, |
| 116 | + "prompt": row["input"], |
| 117 | + "test_code": row["gt_output"], |
| 118 | + "entry_point": entry_point, |
| 119 | + "response": response, |
| 120 | + } |
| 121 | + |
| 122 | + |
| 123 | +def main(): |
| 124 | + |
| 125 | + args = get_args() |
| 126 | + dataset_path = args.dataset_file |
| 127 | + checkpoint_path = args.checkpoint_path |
| 128 | + metric = evaluate.load("rouge") |
| 129 | + nltk.download("punkt") |
| 130 | + |
| 131 | + tokenizer = AutoTokenizer.from_pretrained( |
| 132 | + checkpoint_path, |
| 133 | + model_max_length=2048, |
| 134 | + padding_side="left", |
| 135 | + use_fast=False, |
| 136 | + ) |
| 137 | + |
| 138 | + data = get_groundtruth(args.dataset_file) |
| 139 | + query_types, gt_outputs = data["dataset"], data["gt_output"] |
| 140 | + |
| 141 | + target_required_GSM8K = [] |
| 142 | + target_required_OpenOrca = [] |
| 143 | + results_MBXP = [] |
| 144 | + preds_token_GSM8K = [] |
| 145 | + preds_token_OpenOrca = [] |
| 146 | + preds_token_MBXP = [] |
| 147 | + |
| 148 | + eval_dtype = np.int64 |
| 149 | + if args.dtype == "int32": |
| 150 | + eval_dtype = np.int32 |
| 151 | + elif args.dtype == "float": |
| 152 | + eval_dtype = np.float32 |
| 153 | + |
| 154 | + with open(args.mlperf_accuracy_file, "r") as f: |
| 155 | + results = json.load(f) |
| 156 | + |
| 157 | + seen = set() |
| 158 | + gen_tok_len = 0 |
| 159 | + gen_num = 0 |
| 160 | + for pred in results: |
| 161 | + gen_num += 1 |
| 162 | + qsl_idx = pred["qsl_idx"] |
| 163 | + if qsl_idx in seen: |
| 164 | + continue |
| 165 | + |
| 166 | + seen.add(qsl_idx) |
| 167 | + |
| 168 | + query_type = query_types.iloc[qsl_idx] |
| 169 | + if query_type == "GSM8K": |
| 170 | + target = gt_outputs.iloc[qsl_idx] |
| 171 | + target_required_GSM8K.append(target) |
| 172 | + pred = np.frombuffer(bytes.fromhex(pred["data"]), eval_dtype) |
| 173 | + gen_tok_len += len(pred) |
| 174 | + preds_token_GSM8K.append(pred) |
| 175 | + elif query_type == "OpenOrca": |
| 176 | + target = gt_outputs.iloc[qsl_idx] |
| 177 | + target_required_OpenOrca.append(target) |
| 178 | + pred = np.frombuffer(bytes.fromhex(pred["data"]), eval_dtype) |
| 179 | + preds_token_OpenOrca.append(pred) |
| 180 | + gen_tok_len += len(pred) |
| 181 | + else: |
| 182 | + target = data.iloc[qsl_idx] |
| 183 | + pred = np.frombuffer(bytes.fromhex(pred["data"]), eval_dtype) |
| 184 | + pred_str = tokenizer.decode(pred, skip_special_tokens=True) |
| 185 | + results_MBXP.append(create_mbxp_dict(target, pred_str)) |
| 186 | + gen_tok_len += len(pred) |
| 187 | + |
| 188 | + # OpenOrca metric |
| 189 | + preds_decoded_text = tokenizer.batch_decode( |
| 190 | + preds_token_OpenOrca, skip_special_tokens=True |
| 191 | + ) |
| 192 | + |
| 193 | + preds, targets = postprocess_text( |
| 194 | + preds_decoded_text, target_required_OpenOrca |
| 195 | + ) |
| 196 | + |
| 197 | + if preds: |
| 198 | + result = metric.compute( |
| 199 | + predictions=preds, |
| 200 | + references=targets, |
| 201 | + use_stemmer=True, |
| 202 | + use_aggregator=False, |
| 203 | + ) |
| 204 | + result = {k: round(np.mean(v) * 100, 4) for k, v in result.items()} |
| 205 | + prediction_lens = [len(pred) for pred in preds] |
| 206 | + |
| 207 | + else: |
| 208 | + result = {} |
| 209 | + prediction_lens = [] |
| 210 | + |
| 211 | + import ipdb; ipdb.set_trace() |
| 212 | + # GSM8K metric |
| 213 | + preds_decoded_text = tokenizer.batch_decode( |
| 214 | + preds_token_GSM8K, skip_special_tokens=True |
| 215 | + ) |
| 216 | + pred_nums = [ |
| 217 | + maybe_remove_comma(find_number(pred_text.split("\nQ:")[0])) |
| 218 | + for pred_text in preds_decoded_text |
| 219 | + ] |
| 220 | + gsm8k_total = len(target_required_GSM8K) |
| 221 | + correct = 0 |
| 222 | + for idx in range(len(target_required_GSM8K)): |
| 223 | + ref = try_float(target_required_GSM8K[idx]) |
| 224 | + tgt = try_float(pred_nums[idx]) |
| 225 | + if tgt is None: |
| 226 | + continue |
| 227 | + correct += ref == tgt |
| 228 | + |
| 229 | + result["gsm8k"] = 100.0 * correct / gsm8k_total |
| 230 | + |
| 231 | + # MBXP metric |
| 232 | + # from evaluate_mbxp import evaluate_mbxp |
| 233 | + |
| 234 | + # if results_MBXP: |
| 235 | + # result['mbxp'] = evaluate_mbxp(results_MBXP, args.n_workers) |
| 236 | + # else: |
| 237 | + # result['mbxp'] = 0 |
| 238 | + |
| 239 | + result = { |
| 240 | + **result, |
| 241 | + "gen_len": np.sum(prediction_lens), |
| 242 | + "gen_num": gen_num, |
| 243 | + "gen_tok_len": gen_tok_len, |
| 244 | + "tokens_per_sample": round(gen_tok_len / gen_num, 1), |
| 245 | + } |
| 246 | + |
| 247 | + print("\nResults\n") |
| 248 | + print(result) |
| 249 | + |
| 250 | + |
| 251 | +if __name__ == "__main__": |
| 252 | + main() |
0 commit comments