|
| 1 | +import math |
| 2 | +import operator |
| 3 | + |
| 4 | +import pytest |
| 5 | + |
| 6 | +import arkouda as ak |
| 7 | + |
| 8 | +from benchmark_v2.benchmark_utils import calc_num_bytes |
| 9 | + |
| 10 | + |
| 11 | +DTYPES = ("uint64", "bigint") |
| 12 | +NDIMS = (1, 2, 3) |
| 13 | +OPS = ("+", "-", "*", "/", "//", "&", "|", "^") |
| 14 | + |
| 15 | + |
| 16 | +def choose_shape(n: int, ndim: int) -> tuple[int, ...]: |
| 17 | + """ |
| 18 | + Choose an ndim-dimensional shape whose product is <= n, while: |
| 19 | + 1) keeping dimensions as even as possible (minimize max-min) |
| 20 | + 2) keeping product close to n (minimize overshoot) |
| 21 | +
|
| 22 | + Examples |
| 23 | + -------- |
| 24 | + n=36, ndim=3 -> (3, 3, 4) |
| 25 | + """ |
| 26 | + if ndim == 1: |
| 27 | + return (max(1, int(n)),) |
| 28 | + |
| 29 | + if ndim == 2: |
| 30 | + root = int(math.isqrt(max(1, n))) |
| 31 | + best = None |
| 32 | + # search around sqrt(n) |
| 33 | + for a in range(max(1, root - 64), root + 65): |
| 34 | + b = n // a |
| 35 | + dims = tuple(sorted((a, b))) |
| 36 | + prod = dims[0] * dims[1] |
| 37 | + spread = dims[1] - dims[0] |
| 38 | + overshoot = prod - n |
| 39 | + score = spread * 1_000_000 + overshoot |
| 40 | + cand = (score, dims) |
| 41 | + if best is None or cand < best: |
| 42 | + best = cand |
| 43 | + return best[1] |
| 44 | + |
| 45 | + if ndim == 3: |
| 46 | + root = int(round(max(1, n) ** (1 / 3))) |
| 47 | + best = None |
| 48 | + # search a,b around cube-root; compute c as ceil(n/(a*b)) |
| 49 | + for a in range(max(1, root - 64), root + 65): |
| 50 | + for b in range(max(1, root - 64), root + 65): |
| 51 | + ab = a * b |
| 52 | + if ab <= 0: |
| 53 | + continue |
| 54 | + c = n // ab |
| 55 | + dims = tuple(sorted((a, b, max(1, c)))) |
| 56 | + prod = dims[0] * dims[1] * dims[2] |
| 57 | + spread = dims[2] - dims[0] |
| 58 | + overshoot = prod - n |
| 59 | + score = spread * 1_000_000 + overshoot |
| 60 | + cand = (score, dims) |
| 61 | + if best is None or cand < best: |
| 62 | + best = cand |
| 63 | + return best[1] |
| 64 | + |
| 65 | + raise ValueError(f"Unsupported ndim={ndim}") |
| 66 | + |
| 67 | + |
| 68 | +def _make_uint64(shape: tuple[int, ...], seed: int): |
| 69 | + size = 1 |
| 70 | + for d in shape: |
| 71 | + size *= d |
| 72 | + a = ak.randint(0, 2**64, size=size, dtype=ak.uint64, seed=seed) |
| 73 | + if len(shape) > 1: |
| 74 | + a = a.reshape(*shape) |
| 75 | + return a |
| 76 | + |
| 77 | + |
| 78 | +def _make_bigint_2limb(shape: tuple[int, ...], seed: int): |
| 79 | + """Make a bigint array using exactly two uint64 limbs (hi, lo).""" |
| 80 | + size = 1 |
| 81 | + for d in shape: |
| 82 | + size *= d |
| 83 | + |
| 84 | + hi = ak.randint(0, 2**64, size=size, dtype=ak.uint64, seed=seed) |
| 85 | + lo = ak.randint(0, 2**64, size=size, dtype=ak.uint64, seed=seed + 1) |
| 86 | + |
| 87 | + bi = ak.bigint_from_uint_arrays([hi, lo]) |
| 88 | + if len(shape) > 1: |
| 89 | + bi = bi.reshape(*shape) |
| 90 | + return bi |
| 91 | + |
| 92 | + |
| 93 | +def _make_arrays(shape: tuple[int, ...], dtype: str, seed: int): |
| 94 | + if dtype == "uint64": |
| 95 | + a = _make_uint64(shape, seed) |
| 96 | + b = _make_uint64(shape, seed + 10_000) |
| 97 | + return a, b |
| 98 | + elif dtype == "bigint": |
| 99 | + a = _make_bigint_2limb(shape, seed) |
| 100 | + b = _make_bigint_2limb(shape, seed + 10_000) |
| 101 | + return a, b |
| 102 | + else: |
| 103 | + raise ValueError(f"Unsupported dtype={dtype}") |
| 104 | + |
| 105 | + |
| 106 | +def _get_binop(op: str): |
| 107 | + # Use Python operators so this works naturally on arkouda pdarrays. |
| 108 | + if op == "+": |
| 109 | + return operator.add |
| 110 | + if op == "-": |
| 111 | + return operator.sub |
| 112 | + if op == "*": |
| 113 | + return operator.mul |
| 114 | + if op == "/": |
| 115 | + return operator.truediv |
| 116 | + if op == "//": |
| 117 | + return operator.floordiv |
| 118 | + if op == "&": |
| 119 | + return operator.and_ |
| 120 | + if op == "|": |
| 121 | + return operator.or_ |
| 122 | + if op == "^": |
| 123 | + return operator.xor |
| 124 | + raise ValueError(f"Unknown op={op}") |
| 125 | + |
| 126 | + |
| 127 | +@pytest.mark.skip_numpy(True) |
| 128 | +@pytest.mark.benchmark(group="AK_binop_ops") |
| 129 | +@pytest.mark.parametrize("dtype", DTYPES) |
| 130 | +@pytest.mark.parametrize("ndim", NDIMS) |
| 131 | +@pytest.mark.parametrize("op", OPS) |
| 132 | +def bench_binop_ops(benchmark, dtype, ndim, op): |
| 133 | + """ |
| 134 | + Benchmark binary operations on uint64 and bigint across 1D/2D/3D shapes. |
| 135 | +
|
| 136 | + - Total element target is ~ pytest.prob_size * cfg["numLocales"] |
| 137 | + - Shapes are chosen to be as even as possible while keeping product close to N. |
| 138 | + - Bigint arrays are built from exactly two uint64 limbs via ak.bigint_from_uint_arrays. |
| 139 | + """ |
| 140 | + cfg = ak.get_config() |
| 141 | + N = pytest.prob_size * cfg["numLocales"] |
| 142 | + seed = pytest.seed or 0 |
| 143 | + |
| 144 | + shape = choose_shape(N, ndim) |
| 145 | + a, b = _make_arrays(shape, dtype, seed) |
| 146 | + |
| 147 | + fn = _get_binop(op) |
| 148 | + |
| 149 | + bytes_a = calc_num_bytes(a) |
| 150 | + bytes_b = calc_num_bytes(b) |
| 151 | + num_bytes = bytes_a + bytes_b |
| 152 | + |
| 153 | + benchmark.pedantic( |
| 154 | + fn, |
| 155 | + args=[a, b], |
| 156 | + rounds=pytest.trials, |
| 157 | + ) |
| 158 | + |
| 159 | + # metadata |
| 160 | + benchmark.extra_info["description"] = ( |
| 161 | + f"Binary op '{op}' on dtype={dtype} with shape={shape} (target N={N}, " |
| 162 | + f"actual elements={math.prod(shape)})." |
| 163 | + ) |
| 164 | + benchmark.extra_info["problem_size"] = N |
| 165 | + benchmark.extra_info["shape"] = shape |
| 166 | + benchmark.extra_info["ndim"] = ndim |
| 167 | + benchmark.extra_info["dtype"] = dtype |
| 168 | + benchmark.extra_info["op"] = op |
| 169 | + benchmark.extra_info["num_bytes"] = num_bytes |
| 170 | + benchmark.extra_info["transfer_rate"] = "{:.4f} GiB/sec".format( |
| 171 | + (num_bytes / benchmark.stats["mean"]) / 2**30 |
| 172 | + ) |
0 commit comments