@@ -64,42 +64,25 @@ def test_reac_rates():
6464 moose .reinit ()
6565 moose .start (10 )
6666
67- E = (np .array ([0.76793869 , 0.69093771 , 0.61740932 , 0.55290337 , 0.50043755 ,
68- 0.46090277 , 0.43395074 , 0.41882627 , 0.41492281 , 0.42206285 ,
69- 0.4405646 , 0.47111808 , 0.51443061 , 0.57058404 , 0.63814939 ,
70- 0.71337226 , 0.79003606 , 0.86055299 , 0.91814872 , 0.95908718 ,
71- 0.9836508 , 0.99540289 , 0.99934529 , 0.99998887 , 0.99999589 ,
72- 1. , 1.19866933 , 1.38941834 , 1.56464247 , 1.71735609 ,
73- 1.84147098 , 1.93203909 , 1.98544973 , 1.9995736 , 1.97384763 ,
74- 1.90929743 , 1.8084964 , 1.67546318 , 1.51550137 , 1.33498815 ,
75- 1.14112001 , 0.94162586 , 0.7444589 , 0.55747956 , 0.38814211 ,
76- 0.2431975 , 0.12842423 , 0.04839793 , 0.006309 , 0.00383539 ]),
77- np .array ([1.35368806e-01 , 1.74391515e-01 , 2.08263083e-01 , 2.34835055e-01 ,
78- 2.53957994e-01 , 2.66695461e-01 , 2.74465660e-01 , 2.78476408e-01 ,
79- 2.79468906e-01 , 2.77640055e-01 , 2.72631277e-01 , 2.63551810e-01 ,
80- 2.49094224e-01 , 2.27869755e-01 , 1.99072915e-01 , 1.63375068e-01 ,
81- 1.23566311e-01 , 8.42635843e-02 , 5.04491469e-02 , 2.55522217e-02 ,
82- 1.02890632e-02 , 2.90344842e-03 , 4.13990858e-04 , 7.03942852e-06 ,
83- 2.60159221e-06 , 0.00000000e+00 , 0.00000000e+00 , 2.22044605e-16 ,
84- 0.00000000e+00 , 0.00000000e+00 , 2.22044605e-16 , 2.22044605e-16 ,
85- 2.22044605e-16 , 2.22044605e-16 , 4.44089210e-16 , 0.00000000e+00 ,
86- 2.22044605e-16 , 2.22044605e-16 , 0.00000000e+00 , 2.22044605e-16 ,
87- 2.22044605e-16 , 0.00000000e+00 , 1.11022302e-16 , 0.00000000e+00 ,
88- 0.00000000e+00 , 2.77555756e-17 , 0.00000000e+00 , 0.00000000e+00 ,
89- 0.00000000e+00 , 0.00000000e+00 ]))
90-
91-
92-
9367 A = []
9468 for t in moose .wildcardFind ('/##[TYPE=Table2]' ):
9569 A .append (t .vector )
9670
97- m = np .mean (A , axis = 1 )
98- u = np .std (A , axis = 1 )
71+ m0 , u0 = np .mean (A , axis = 0 ), np .std (A , axis = 0 )
72+ m1 , u1 = np .mean (A , axis = 1 ), np .std (A , axis = 1 )
73+
74+ a , b = m0 .mean (), m0 .std ()
75+ assert np .allclose ((0.8839693450611644 , 0.06768440311215577 ), (a ,b )), (a ,b )
76+
77+ a , b = m1 .mean (), m1 .std ()
78+ assert np .allclose ((0.8839693450611644 , 0.1160306549388357 ), (a ,b )), (a ,b )
79+
80+ a , b = u0 .mean (), u0 .std ()
81+ assert np .allclose ((0.11603065493883559 , 0.06768440311215572 ), (a ,b )), (a ,b )
82+
83+ a , b = u1 .mean (), u1 .std ()
84+ assert np .allclose ((0.06768440311215573 , 0.06768440311215573 ),(a ,b )), (a ,b )
9985
100- # multithreaded version given different results.
101- assert np .allclose (m , E [0 ], rtol = 1e-3 ), (m - E [0 ])
102- assert np .allclose (u , E [1 ], rtol = 1e-3 ), (u - E [1 ])
10386 print ('all done' )
10487
10588if __name__ == '__main__' :
0 commit comments