-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcontour_detect.py
634 lines (506 loc) · 19.1 KB
/
contour_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
from __future__ import print_function
import cv2
import PIL.Image
import numpy as np
import scipy.stats
import sys
import itertools
from line_intersection import *
np.set_printoptions(suppress=True, precision=2)
def scaleImageIfNeeded(img, max_width=1024, max_height=1024):
"""Scale image down to max_width / max_height keeping aspect ratio if needed. Do nothing otherwise."""
# Input and Output is a numpy array
img = PIL.Image.fromarray(img)
img_width, img_height = img.size
# print("Image size %dx%d" % (img_width, img_height))
aspect_ratio = min(float(max_width)/img_width, float(max_height)/img_height)
if aspect_ratio < 1.0:
new_width, new_height = ((np.array(img.size) * aspect_ratio)).astype(int)
# print(" Resizing to %dx%d" % (new_width, new_height))
return np.array(img.resize((new_width,new_height)))
return np.array(img)
def getAngle(a,b,c):
# Get angle given 3 side lengths, in degrees
k = (a*a+b*b-c*c) / (2*a*b)
# Handle floating point errors
if (k < -1):
k=-1
elif k > 1:
k=1
return np.arccos(k) * 180.0 / np.pi
def angleCloseDeg(a, b, angle_threshold=10):
d = np.abs(a - b)
# Handle angles that are ~180 degrees apart
return d <= angle_threshold or np.abs(d-180) <= angle_threshold
def getSegmentThetaRho(line):
x1,y1,x2,y2 = line
theta = np.math.atan2(y2-y1, x2-x1)
m = np.tan(theta)
# rho = np.abs(y1 + m*x1) / np.sqrt(m*m+1)
rho = x1*np.cos(theta) + y1*np.sin(theta)
return theta, rho
def getTwoLineSegmentIntersection(p,pr,q,qs):
# Uses http://stackoverflow.com/a/565282/2574639
# Given two line segments defined by sets of points
# (p -> pr) and (q -> qs).
# Return the intersection point between them
# *assumes it always exists for our particular use-case*
# Convert to floats
p = p.astype(np.float32)
pr = pr.astype(np.float32)
q = q.astype(np.float32)
qs = qs.astype(np.float32)
r = pr-p
s = qs-q
# print(p, pr, r)
# print(q, qs, s)
rxs = np.cross(r, s)
if rxs == 0:
return [] # parallel
t = np.cross((q - p), s) / rxs
return p + t*r # intersect
def chooseRandomGoodQuad(lines_a, lines_b, median_contour):
# Get random set of points
# Redo until min side distance of random corners greater than a multiple
# of the median tile found from initial estimator.
sides_tile = getSquareSides(median_contour)
for i in range(50):
corners = chooseRandomQuad(lines_a, lines_b)
sides_quad = getSquareSides(corners)
if (i < 5):
tile_size_mult = 5
elif (i < 10):
tile_size_mult = 4
elif (i < 20):
tile_size_mult = 3
elif (i < 30):
tile_size_mult = 2
else:
tile_size_mult = 1
if min(sides_quad) > min(sides_tile*tile_size_mult):
return corners
print('chooseRandomGoodQuad hit max iter: %d' % i)
return corners
def chooseRandomQuad(lines_a, lines_b):
# Return 1 random quad (4 points) by choosing
# 2 lines from lines_a and 2 lines from lines_b
# and returning their intersections
a = np.random.choice(range(len(lines_a)),2, replace=False)
b = np.random.choice(range(len(lines_b)),2, replace=False)
pairs = np.array([
[a[0], b[0]],
[a[0], b[1]],
[a[1], b[1]],
[a[1], b[0]],
])
corners = np.zeros([4,2])
for i in range(4):
k1 = lines_a[pairs[i,0]]
k2 = lines_b[pairs[i,1]]
corners[i,:] = getTwoLineSegmentIntersection(k1[:2], k1[2:], k2[:2], k2[2:])
return corners
def getSegmentTheta(line):
x1,y1,x2,y2 = line
theta = np.math.atan2(y2-y1, x2-x1)
return theta
def is_square(cnt, eps=3.0, xratio_thresh = 0.5):
# 4x2 array, rows are each point, columns are x and y
center = cnt.sum(axis=0)/4
# Side lengths of rectangular contour
dd0 = np.sqrt(((cnt[0,:] - cnt[1,:])**2).sum())
dd1 = np.sqrt(((cnt[1,:] - cnt[2,:])**2).sum())
dd2 = np.sqrt(((cnt[2,:] - cnt[3,:])**2).sum())
dd3 = np.sqrt(((cnt[3,:] - cnt[0,:])**2).sum())
# diagonal ratio
xa = np.sqrt(((cnt[0,:] - cnt[2,:])**2).sum())
xb = np.sqrt(((cnt[1,:] - cnt[3,:])**2).sum())
xratio = xa/xb if xa < xb else xb/xa
# Check whether all points part of convex hull
# ie. not this http://i.stack.imgur.com/I6yJY.png
# all corner angles, angles are less than 180 deg, so not necessarily internal angles
ta = getAngle(dd3, dd0, xb)
tb = getAngle(dd0, dd1, xa)
tc = getAngle(dd1, dd2, xb)
td = getAngle(dd2, dd3, xa)
angle_sum = np.round(ta+tb+tc+td)
is_convex = angle_sum == 360
angles = np.array([ta,tb,tc,td])
good_angles = np.all((angles > 40) & (angles < 140))
# side ratios
dda = dd0 / dd1
if dda < 1:
dda = 1. / dda
ddb = dd1 / dd2
if ddb < 1:
ddb = 1. / ddb
ddc = dd2 / dd3
if ddc < 1:
ddc = 1. / ddc
ddd = dd3 / dd0
if ddd < 1:
ddd = 1. / ddd
side_ratios = np.array([dda,ddb,ddc,ddd])
good_side_ratios = np.all(side_ratios < eps)
# Return whether side ratios within certain ratio < epsilon
return (
# abs(1.0 - dda) < eps and
# abs(1.0 - ddb) < eps and
# xratio > xratio_thresh and
# good_side_ratios and
# is_convex and
good_angles)
def minimum_distance2(v, w, p):
# Return squared min distance between point p and line segment vw
# Via http://stackoverflow.com/a/1501725
# Return minimum distance between line segment vw and point p
l2 = np.sum((v - w)**2) # i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0):
return np.sum((p - v)**2) # v == w case
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
t = max(0, min(1, np.dot(p - v, w - v) / l2))
projection = v + t * (w - v) # Projection falls on the segment
return np.sum((p - projection)**2)
def getMinLineAngleDistance(a0, a1):
# Compare line angles (which can be 180 off from one another, or +- 180)
v0 = abs(a1-a0)
v1 = abs((a1+np.pi) - a0)
v2 = abs(a1 - (a0+np.pi))
return min([v0,v1,v2])
def getBestCorners(tile_corners, hough_lines, angle_threshold = 10*np.pi/180):
# Given 4x2 imperfect tile corners and Nx4 line segments
# Expects line segments and corner points to be in same cartesian space
#
# Find 4 best line segments that are best match to the tile corners
# and return the corners based off of those line segments, and those line segments
best_lines = np.zeros([4,4])
for i in range(4):
corner_theta = getSegmentTheta(tile_corners[[i,i,((i+1)%4),((i+1)%4)], [0,1,0,1]])
corner_ctr_pt = (tile_corners[i,:] + tile_corners[((i+1)%4),:]) / 2
best_d = 1e6
for line in hough_lines:
theta = getSegmentTheta(line)
# If angle within 10 degrees
# if abs(corner_theta - theta) < angle_threshold:
if getMinLineAngleDistance(corner_theta, theta) < angle_threshold:
d = minimum_distance2(line[:2], line[2:], corner_ctr_pt)
if d < best_d:
best_d = d
best_lines[i,:] = line
new_corners = np.zeros([4,2], dtype=np.float32)
for i in range(4):
x = getTwoLineSegmentIntersection(
best_lines[i,:2], best_lines[i,2:],
best_lines[(i+1)%4,:2], best_lines[(i+1)%4,2:])
# print(best_lines, x)
# print(best_lines[i,:2], best_lines[i,2:], best_lines[(i+1)%4,:2], best_lines[(i+1)%4,2:])
new_corners[i,:] = x
return new_corners, best_lines
def simplifyContours(contours):
for i in range(len(contours)):
# Approximate contour and update in place
contours[i] = cv2.approxPolyDP(contours[i],0.04*cv2.arcLength(contours[i],True),True)
def pruneContours(contours):
new_contours = []
for i in range(len(contours)):
cnt = contours[i]
# Only contours that fill an area of at least 8x8 pixels
if cv2.contourArea(cnt) < 8*8:
continue
# Only rectangular contours allowed
if len(cnt) != 4:
continue
if not is_square(cnt):
continue
new_contours.append(cnt)
new_contours = np.array(new_contours)
if len(new_contours) == 0:
return new_contours, None
norm_contours = new_contours[:,:,0,:] - new_contours[:,[0],0,:]
median_contour = np.median(norm_contours, axis=0).astype(int)
diff = np.sqrt(np.sum((norm_contours - median_contour)**2,axis=2))
new_contours = new_contours[np.all(diff < 60, axis=1)]
return np.array(new_contours), median_contour
def getSquareSides(cnt):
# 4x2 array, rows are each point, columns are x and y
center = cnt.sum(axis=0)/4
# Side lengths of rectangular contour
dd0 = np.sqrt(((cnt[0,:] - cnt[1,:])**2).sum())
dd1 = np.sqrt(((cnt[1,:] - cnt[2,:])**2).sum())
dd2 = np.sqrt(((cnt[2,:] - cnt[3,:])**2).sum())
dd3 = np.sqrt(((cnt[3,:] - cnt[0,:])**2).sum())
return np.array([dd0, dd1, dd2, dd3])
from time import time
def calculateMask(mask_shape, contours, iters=10):
a = time()
sum_mask = np.zeros(mask_shape, dtype=int)
tmp_mask = np.zeros(mask_shape, dtype=int)
for i, cnt in enumerate(contours):
for i in np.linspace(5,23,iters):
# for i in [3,5,7,9,11,13,15]:
# Calculate oversized tile mask and add to sum
# big_cnt = (cnt.mean(axis=0) + (cnt-cnt.mean(axis=0))*i).astype(int)
cnt_center = cnt.mean(axis=0)
big_cnt = (cnt*i + cnt_center*(1-i)).astype(int)
tmp_mask[:] = 0 # Reset
cv2.drawContours(tmp_mask,[big_cnt],0,1,-1) # Fill mask with 1's inside contour
sum_mask += tmp_mask
# Normalize mask to 0-1 range
sum_mask = sum_mask.astype(float) / sum_mask.max()
# print("Mask calc took %.4f seconds." % (time() - a))
return sum_mask
def getContourThetas(contours):
thetas = []
for cnt in contours:
cnt = cnt[:,0,:]
if cnt[0,0] < cnt[1,0]:
side0 = np.hstack([cnt[1,:],cnt[0,:]])
else:
side0 = np.hstack([cnt[0,:],cnt[1,:]])
if cnt[1,0] < cnt[2,0]:
side1 = np.hstack([cnt[2,:],cnt[1,:]])
else:
side1 = np.hstack([cnt[1,:],cnt[2,:]])
if cnt[2,0] < cnt[3,0]:
side2 = np.hstack([cnt[3,:],cnt[2,:]])
else:
side2 = np.hstack([cnt[2,:],cnt[3,:]])
if cnt[3,0] < cnt[0,0]:
side3 = np.hstack([cnt[0,:],cnt[3,:]])
else:
side3 = np.hstack([cnt[3,:],cnt[0,:]])
theta0 = getSegmentTheta(side0)
theta1 = getSegmentTheta(side1)
theta2 = getSegmentTheta(side2)
theta3 = getSegmentTheta(side3)
thetas.extend([theta0,theta1,theta2,theta3])
return np.array(thetas)
def getEstimatedChessboardMask(img, edges, iters=10):
# Morphological Gradient to get internal squares of canny edges.
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
edges_gradient = cv2.morphologyEx(edges, cv2.MORPH_GRADIENT, kernel)
_, contours, hierarchy = cv2.findContours(edges_gradient, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# Approximate polygons of contours
simplifyContours(contours)
if len(contours) == 0:
return np.ones(img.shape[:2], dtype=float), None, None, None
# Prune contours to rectangular ones
contours, median_contour = pruneContours(contours)
if len(contours) == 0 or median_contour is None:
return np.ones(img.shape[:2], dtype=float), None, None, None
thetas = getContourThetas(contours)
top_two_angles = calculateKDE(thetas)
mask = calculateMask(edges_gradient.shape, contours, iters)
min_area_rect = getMinAreaRect(mask)
return mask, top_two_angles, min_area_rect, median_contour
def calculateKDE(thetas):
thetas *= 180/np.pi
thetas[thetas<0] += 180
kde_func = scipy.stats.gaussian_kde(thetas)
positions = np.linspace(-40,180+40,360)
kde_res = kde_func(positions)
left_half = np.diff(kde_res)
right_half = np.diff(kde_res[::-1])
f = kde_res.copy()
f[1:][left_half<0] = 0
f[:-1][right_half[::-1]<0] = 0
peak_indices = np.argwhere(f).flatten()
peak_angles = positions[peak_indices]
order = np.argsort(kde_res[peak_indices])[::-1] # strongest to weakest peaks
return peak_angles[order[:2]] # top two strongest angles in degrees
# def plotKDE(thetas):
# thetas *= 180/np.pi
# thetas[thetas<0] += 180
# ax1 = plt.subplot(211)
# plt.plot(thetas,np.zeros(thetas.shape),'.')
# plt.hist(thetas,20)
# plt.subplot(212, sharex=ax1)
# kde_func = scipy.stats.gaussian_kde(thetas)
# positions = np.linspace(-40,180+40,360)
# kde_res = kde_func(positions)
# plt.plot(positions, kde_res)
# c = kde_res.copy()
# left_half = np.diff(kde_res)
# right_half = np.diff(kde_res[::-1])
# f = c.copy()
# f[1:][left_half<0] = 0
# f[:-1][right_half[::-1]<0] = 0
# peak_indices = np.argwhere(f).flatten()
# print(peak_indices, positions[peak_indices])
# peak_angles = positions[peak_indices]
# plt.plot(peak_angles, kde_res[peak_indices],'go')
# order = np.argsort(kde_res[peak_indices][::-1]) # strongest to weakest peaks
# return peak_angles[order[:2]], peak_angles, kde_res[peak_indices] # two angles in degrees
def getHoughLines(edges, min_line_size=100):
# Expects chessboard to take up over 50% of edge map
# min_line_size = int(min(edges.shape)/8)
lines = cv2.HoughLinesP(edges,1,np.pi/360.0, int(min_line_size),
minLineLength = min_line_size, maxLineGap = min_line_size/2)
if lines is None:
return np.array([])
return lines[:,0,:]
def getSegmentTheta(line):
x1,y1,x2,y2 = line
theta = np.math.atan2(y2-y1, x2-x1)
return theta
def parseHoughLines(lines, top_two_angles, angle_threshold_deg=20):
is_good = np.zeros(len(lines)) # 0 = bad, 1 = close to 1st angle, 2 = close to 2nd angle
for i, line in enumerate(lines):
theta = getSegmentTheta(line) * 180/np.pi # to degrees
d1 = getMinLineAngleDistanceDeg(theta, top_two_angles[0])
d2 = getMinLineAngleDistanceDeg(theta, top_two_angles[1])
if (d1 < angle_threshold_deg):
is_good[i] = 1
elif (d2 < angle_threshold_deg):
is_good[i] = 2
lines_a = lines[is_good==1]
lines_b = lines[is_good==2]
return lines_a, lines_b
def getMinLineAngleDistance(a0, a1):
# In radians
# Compare line angles (which can be 180 off from one another, or +- 180)
v0 = abs(a1-a0)
v1 = abs((a1+np.pi) - a0)
v2 = abs(a1 - (a0+np.pi))
return min([v0,v1,v2])
def getMinLineAngleDistanceDeg(a0, a1):
# In degrees
# Compare line angles (which can be 180 off from one another, or +- 180)
v0 = abs(a1-a0)
v1 = abs((a1+180) - a0)
v2 = abs(a1 - (a0+180))
return min([v0,v1,v2])
def plotHoughLines(img, lines, color=(255,255,255), line_thickness=2):
# colors = np.random.random([lines.shape[0],3])*255
# colors = np.array([
# [20,20,20],
# [255,0,0],
# [0,255,0],
# [255,255,0],
# [0,0,255],
# [255,0,255],
# [0,255,255],
# [200,200,200],
# ], dtype=np.uint8)
# Plot lines
for i, line in enumerate(lines):
# color = list(map(int,colors[i%len(colors)]))
cv2.line(img,
tuple(line[:2].astype(np.int)),
tuple(line[2:].astype(np.int)), color, thickness=line_thickness)
def getMinAreaRect(mask):
a = np.argwhere(mask.T>0.5)
# rect = cv2.boundingRect(a)
rect = cv2.minAreaRect(a)
return rect
def drawMinAreaRect(img, rect, color=(0,255,255)):
ctr = tuple(map(int,rect[0]))
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img,[box],0,color,2)
cv2.circle(img, ctr, 3, (255,0,0),-1)
def skeletonize_1d(data):
c = data.copy()
left_half = np.diff(data)
right_half = np.diff(data[::-1])
f = data.copy()
f[1:][left_half<0] = 0
f[:-1][right_half[::-1]<0] = 0
return f
def getWarpCheckerLines(img):
"""Given a warped axis-aligned image of a chessboard, return internal line crossings"""
# TODO: Fix awkward conversion
# Convert RGB numpy array to image, then to grayscale image, then back to numpy array
img_gray = np.array(PIL.Image.fromarray(img).convert('L'))
img_gray = cv2.bilateralFilter(img_gray,15,75,75)
# Find gradients
sobelx = cv2.Sobel(img_gray,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img_gray,cv2.CV_64F,0,1,ksize=5)
sobelx_pos = sobelx.copy()
sobelx_pos[sobelx <= 0] = 0
sobelx_neg = sobelx.copy()
sobelx_neg[sobelx > 0] = 0
sobely_pos = sobely.copy()
sobely_pos[sobely <= 0] = 0
sobely_neg = sobely.copy()
sobely_neg[sobely > 0] = 0
kernel = np.array([ 0. , 0. , 0.04, 0.32, 0.88, 0.88, 0.32, 0.04, 0. , 0. ])
checker_x = np.sum(sobelx_pos, axis=0) * np.sum(-sobelx_neg, axis=0)
checker_x = np.convolve(checker_x, kernel, 'same')
checker_x = checker_x / checker_x.max()
checker_x[checker_x<0.1] = 0
checker_x = skeletonize_1d(checker_x)
checker_y = np.sum(sobely_pos, axis=1) * np.sum(-sobely_neg, axis=1)
checker_y = np.convolve(checker_y, kernel, 'same')
checker_y = checker_y / checker_y.max()
checker_y[checker_y<0.1] = 0
checker_y = skeletonize_1d(checker_y)
x_lines = np.argwhere(checker_x).flatten()
y_lines = np.argwhere(checker_y).flatten()
#######
## Semi-brute force approach, merge all combinations of 3 points
# with equal spacing under one standard deviation
x_lines = getBestEqualSpacing(x_lines)
y_lines = getBestEqualSpacing(y_lines)
###########
if len(x_lines) < 7 or len(y_lines) < 7:
return [], [], [], []
# Select set of 7 adjacent lines with max sum score
x_scores = np.zeros(x_lines.shape[0]-7+1)
for i in range(0,x_lines.shape[0]-7+1):
x_scores[i] = np.sum(checker_x[x_lines[i:i+7]])
x_start = np.argmax(x_scores)
strongest_x_lines = range(x_start,x_start+7)
y_scores = np.zeros(y_lines.shape[0]-7+1)
for i in range(0,y_lines.shape[0]-7+1):
y_scores[i] = np.sum(checker_y[y_lines[i:i+7]])
y_start = np.argmax(y_scores)
strongest_y_lines = range(y_start,y_start+7)
# TODO: Sanity check areas between lines for consistent color when choosing?
# Choose best internal 7 chessboard lines
lines_x = x_lines[strongest_x_lines]
lines_y = y_lines[strongest_y_lines]
# Add outer chessboard edges assuming consistent step size
step_x = np.median(np.diff(lines_x))
step_y = np.median(np.diff(lines_y))
lines_x = np.hstack([lines_x[0]-step_x, lines_x, lines_x[-1]+step_x])
lines_y = np.hstack([lines_y[0]-step_y, lines_y, lines_y[-1]+step_y])
return lines_x, lines_y, step_x, step_y
# x_lines = np.argwhere(checker_x).flatten()
# y_lines = np.argwhere(checker_y).flatten()
# x_diff = np.diff(x_lines)
# y_diff = np.diff(y_lines)
# step_x_pred = np.median(x_diff)
# step_y_pred = np.median(y_diff)
def pruneGradLines(a, b, eta=10):
# Remove values from vector 'a' that aren't close to values in vector b
is_good = np.zeros(len(a),dtype=bool)
for i,v in enumerate(a):
if min(b-v) < eta:
is_good[i] = True
return a[is_good]
def main(filenames):
for filename in filenames:
img = cv2.imread(filename)
img = scaleImageIfNeeded(img, 600, 480)
# Edges
edges = cv2.Canny(img, 100, 550)
mask, _, _, _ = getEstimatedChessboardMask(img, edges, iters=10)
img_masked_full = cv2.bitwise_and(img,img,mask = (mask > 0.5).astype(np.uint8))
img_masked = cv2.addWeighted(img,0.2,img_masked_full,0.8,0)
edges_masked = cv2.bitwise_and(edges,edges,mask = (mask > 0.5).astype(np.uint8))
cv2.imshow('img %s' % filename,img_masked)
cv2.imshow('edges %s' % filename, edges_masked)
cv2.imshow('mask %s' % filename, mask)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
if len(sys.argv) > 1:
filenames = sys.argv[1:]
else:
# filenames = ['input/1.jpg']
filenames = ['input2/18.jpg']
print("Loading", filenames)
main(filenames)