-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathplm.py
233 lines (200 loc) · 9.26 KB
/
plm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from typing import List, Optional, Tuple, Union
import torch
from accelerate import Accelerator, DistributedType
from apps.plm.generate import (
PackedCausalTransformerGenerator,
PackedCausalTransformerGeneratorArgs,
load_consolidated_model_and_tokenizer,
)
from core.args import dataclass_from_dict
from core.transforms.image_transform import get_image_transform
from core.transforms.video_transform import get_video_transform
from loguru import logger as eval_logger
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model
@register_model("plm")
class PerceptionLM(lmms):
"""
Perception Lanugate Model (PLM)
"Paste the paper link"
"Paste the github link"
"Paste the huggingface link"
"""
def __init__(
self,
pretrained: str = "facebook/Perception-LM-8B",
device: Optional[str] = "cuda",
batch_size: Optional[Union[int, str]] = 1,
compile_prefilling=False,
reduce_generation_overhead=False,
max_tokens=11264,
**kwargs,
) -> None:
super().__init__()
accelerator = Accelerator()
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
# Collect all arguments into a dictionary
args = {
"pretrained": pretrained,
"device": device,
"batch_size": batch_size,
"compile_prefilling": compile_prefilling,
"reduce_generation_overhead": reduce_generation_overhead,
"max_tokens": max_tokens,
**kwargs, # Include any additional keyword arguments
}
# Convert the dictionary to a dotlist format
dotlist = [f"{key}={value}" for key, value in args.items()]
cfg = OmegaConf.from_dotlist(dotlist)
gen_cfg = dataclass_from_dict(PackedCausalTransformerGeneratorArgs, cfg, strict=False)
# Load PLM model
eval_logger.info(f"Lodding PLM model from {cfg.pretrained}")
model, tokenizer, config = load_consolidated_model_and_tokenizer(cfg.pretrained)
# Create preprocessors (transforms)
processor = {}
vision_input_type = config.get("model").get("vision_input_type", "thumb+tile")
max_num_tiles = config.get("model").get("max_num_tiles", 36)
processor["image"] = get_image_transform(vision_input_type=vision_input_type, image_res=model.vision_model.image_size, max_num_tiles=max_num_tiles)
processor["video"] = get_video_transform(image_res=model.vision_model.image_size)
self._video_max_frames = config.get("model").get("video_max_frames", 32)
# Create PLM generator
eval_logger.info(f"Creating packed generator with gen_cfg: {gen_cfg}")
generator = PackedCausalTransformerGenerator(gen_cfg, model, tokenizer)
# Set the class variables
self._tokenizer = tokenizer
self._processor = processor
self._model = model
self._generator = generator
self.batch_size_per_gpu = int(batch_size)
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [
DistributedType.FSDP,
DistributedType.MULTI_GPU,
], "Unsupported distributed type provided. Only DDP and FSDP are supported."
if accelerator.distributed_type == DistributedType.FSDP:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.process_index
self._world_size = self.accelerator.num_processes
else:
self._rank = 0
self._world_size = 1
@property
def generator(self):
return self._generator
@property
def tokenizer(self):
return self._tokenizer
@property
def processor(self):
return self._processor
@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model
@property
def eot_token_id(self):
# we use EOT because end of text is more accurate for what we're doing than end of sentence
return self.tokenizer.eos_token_id
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def video_max_frames(self):
return self._video_max_frames
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
raise NotImplementedError("Loglikelihood is not implemented for PLM")
def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list
def generate_until(self, requests: List[Instance]) -> List[str]:
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tokenizer.encode(x[0], add_bos=False, add_eos=False)
return -len(toks), x[0]
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
for chunk in chunks:
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
task = task[0]
split = split[0]
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
visuals = self.flatten(visuals)
messages = []
for i, context in enumerate(contexts):
if len(visuals) > 0:
visual = visuals[i] if i < len(visuals) else None
if isinstance(visual, str) and visual.endswith((".mp4", ".avi", ".mov")): # Video file
video_info = (visual, self.video_max_frames, None, None, None)
visual, _ = self.processor["video"](video_info)
message = (context, visual)
elif isinstance(visual, Image.Image): # Single image
visual = visual.convert("RGB")
visual, _ = self.processor["image"](visual)
message = (context, visual)
elif isinstance(visual, (list, tuple)) and all(isinstance(v, Image.Image) for v in visual): # Multiple images or Video Frames
visual = [image.convert("RGB") for image in visual]
visual, _ = self.processor["video"]._process_multiple_images_pil(visual)
message = (context, visual)
else:
# Text-only sample
raise NotImplementedError("Text-only input is not yet supported.")
else:
# Text-only sample
raise NotImplementedError("Text-only input is not yet supported.")
messages.append(message)
gen_kwargs = all_gen_kwargs[0]
if "max_new_tokens" in gen_kwargs:
self.generator.max_gen_len = gen_kwargs["max_new_tokens"]
if "temperature" in gen_kwargs:
self.generator.temperature = gen_kwargs["temperature"]
# Default for PLM
self.generator.top_p = None
self.generator.top_k = 100
generation, loglikelihood, greedy = self.generator.generate(messages)
for gen, context in zip(generation, contexts):
if gen.endswith("."):
gen = gen[:-1]
res.append(gen)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), gen)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res
def generate_until_multi_round(self, requests) -> List[str]:
raise NotImplementedError("Multi-round generation is not implemented yet.")