Towards Verifiable FHE in Practice

Proving Correct Execution of TFHE's Bootstrapping using plonky2

Louis Tremblay Thibault and Michael Walter Zama

Abstract

We explore the integration of FHE and SNARKs to prove the correctness of FHE operations. Despite the challenges of overhead in both FHE and SNARKs, we demonstrate progress towards a practically verifiable bootstrapping operation.

Our findings suggest practical feasibility, offering promising implications for secure and efficient computation outsourcing.

Why Plonky2?

- Small base field
- Transparent setup
- Efficient recursion (verifier circuit is small)

Recursion-based IVC

How to prove a loop using recursion. The prover repeatedly proves the circuit for an iteration. "V" is the verifier circuit.

Parameters

n	Q	N	k	В	I
728	Goldilocks prime	1024	1	32	4

ZAMA Resources zama.ai/blog github.com/zama-ai

Highlights

- Recursion-based IVC
- About 20 minute proving time, <200kb proof size, <10 ms verification time
- 100 1000 times faster than zkVMbased systems

Motivation

- Aim to replace trust in hardware vendors with cryptographic assumptions
- Bootstrapping is the main building block of TFHE

IVC Circuit for PBS

An illustration of the circuit for a loop iteration of TFHE's PBS (denoted "F" on the left diagram). The dominating subcircuits are polynomial rotation and the external product.

·····

Performances

