diff --git a/dataproc/python-api-walkthrough.md b/dataproc/python-api-walkthrough.md
index f64d7528601..1a8d436f720 100644
--- a/dataproc/python-api-walkthrough.md
+++ b/dataproc/python-api-walkthrough.md
@@ -1,4 +1,4 @@
-# Use the Python Client Library to call Cloud Dataproc APIs
+# Use the Python Client Library to call Dataproc APIs
Estimated completion time:
@@ -7,13 +7,13 @@ Estimated completion time:
-1. Enable the Cloud Dataproc, Compute Engine, and Cloud Storage APIs in your project.
- *
+1. Click the link below to enable the Dataproc, Compute Engine, and Cloud Storage APIs
+ in a separate GCP console tab in your browser.
+
+ **Note:** After you select your project and enable the APIs, return to this tutorial by clicking
+ on the **Cloud Shell** tab in your browser.
+
+ * [Enable APIs](https://console.cloud.google.com/flows/enableapi?apiid=dataproc,compute_component,storage-component.googleapis.com&redirect=https://console.cloud.google.com)
## Prerequisites (2)
@@ -140,7 +145,8 @@ Job output in Cloud Shell shows cluster creation, job submission,
### Next Steps:
* **View job details from the Console.** View job details by selecting the
- PySpark job from the Cloud Dataproc
+ PySpark job from the Dataproc
+=
[Jobs page](https://console.cloud.google.com/dataproc/jobs)
in the Google Cloud Platform Console.
@@ -160,5 +166,5 @@ Job output in Cloud Shell shows cluster creation, job submission,
gsutil rm -r gs://$BUCKET
```
-* **For more information.** See the [Cloud Dataproc documentation](https://cloud.google.com/dataproc/docs/)
+* **For more information.** See the [Dataproc documentation](https://cloud.google.com/dataproc/docs/)
for API reference and product feature information.