|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import sys\n", |
| 10 | + "sys.path.insert(0, '../')\n", |
| 11 | + "from networkunit import models, tests, scores\n", |
| 12 | + "import quantities as pq\n", |
| 13 | + "import sciunit" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 13, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# Define models\n", |
| 23 | + "model_A = models.stochastic_activity('model A', rate=5*pq.Hz)\n", |
| 24 | + "model_B = models.stochastic_activity('model B', rate=15*pq.Hz)\n", |
| 25 | + "\n", |
| 26 | + "# Define test\n", |
| 27 | + "class fr_lv_jtest(tests.TestM2M, tests.joint_test):\n", |
| 28 | + " score_type = scores.ks_distance # <- define score statistic\n", |
| 29 | + "# score_type = scores.kl_divergence\n", |
| 30 | + " params = {}\n", |
| 31 | + " test_list = [tests.firing_rate_test, tests.isi_variation_test, tests.isi_variation_test]\n", |
| 32 | + " test_params = [{}, {'variation_measure': 'lv'}, {'variation_measure': 'cv'}]" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 14, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "jtest_inst = fr_lv_jtest()" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 22, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [ |
| 49 | + { |
| 50 | + "data": { |
| 51 | + "text/plain": [ |
| 52 | + "(3, 100)" |
| 53 | + ] |
| 54 | + }, |
| 55 | + "execution_count": 22, |
| 56 | + "metadata": {}, |
| 57 | + "output_type": "execute_result" |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "pred = jtest_inst.generate_prediction(model_A)\n", |
| 62 | + "pred.shape" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": 11, |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [ |
| 70 | + { |
| 71 | + "data": { |
| 72 | + "text/plain": [ |
| 73 | + "True" |
| 74 | + ] |
| 75 | + }, |
| 76 | + "execution_count": 11, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "execute_result" |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "isinstance(fr_lv_jtest, type)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 17, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "score = jtest_inst.judge([model_A, model_B])" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": 21, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [ |
| 99 | + { |
| 100 | + "data": { |
| 101 | + "text/plain": [ |
| 102 | + "sciunit.scores.collections_m2m.ScoreMatrixM2M" |
| 103 | + ] |
| 104 | + }, |
| 105 | + "execution_count": 21, |
| 106 | + "metadata": {}, |
| 107 | + "output_type": "execute_result" |
| 108 | + } |
| 109 | + ], |
| 110 | + "source": [ |
| 111 | + "type(score)" |
| 112 | + ] |
| 113 | + } |
| 114 | + ], |
| 115 | + "metadata": { |
| 116 | + "kernelspec": { |
| 117 | + "display_name": "Python 3", |
| 118 | + "language": "python", |
| 119 | + "name": "python3" |
| 120 | + }, |
| 121 | + "language_info": { |
| 122 | + "codemirror_mode": { |
| 123 | + "name": "ipython", |
| 124 | + "version": 3 |
| 125 | + }, |
| 126 | + "file_extension": ".py", |
| 127 | + "mimetype": "text/x-python", |
| 128 | + "name": "python", |
| 129 | + "nbconvert_exporter": "python", |
| 130 | + "pygments_lexer": "ipython3", |
| 131 | + "version": "3.7.3" |
| 132 | + } |
| 133 | + }, |
| 134 | + "nbformat": 4, |
| 135 | + "nbformat_minor": 4 |
| 136 | +} |
0 commit comments