@@ -9991,8 +9991,8 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
9991
9991
// TODO: mmq/mmv support
9992
9992
#endif
9993
9993
9994
- const int64_t nb11 = src1->nb[1];
9995
- const int64_t nb1 = dst->nb[1];
9994
+ const size_t nb11 = src1->nb[1];
9995
+ const size_t nb1 = dst->nb[1];
9996
9996
9997
9997
const struct ggml_tensor * ids = src0;
9998
9998
const int32_t id = ((int32_t *) dst->op_params)[0];
@@ -10517,15 +10517,11 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
10517
10517
10518
10518
if (ggml_is_quantized(tensor->type)) {
10519
10519
// initialize padding to 0 to avoid possible NaN values
10520
- int64_t row_low = 0;
10521
- int64_t row_high = ggml_nrows(tensor);
10522
- int64_t nrows_split = row_high - row_low;
10523
-
10524
- size_t original_size = ggml_nbytes_split(tensor, nrows_split);
10520
+ size_t original_size = ggml_nbytes(tensor);
10525
10521
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
10526
10522
10527
10523
if (padded_size > original_size && tensor->view_src == nullptr) {
10528
- CUDA_CHECK(cudaMemsetAsync ((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[ctx->device][0] ));
10524
+ CUDA_CHECK(cudaMemset ((char *)tensor->data + original_size, 0, padded_size - original_size));
10529
10525
}
10530
10526
}
10531
10527
}
@@ -10628,12 +10624,7 @@ GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend
10628
10624
}
10629
10625
10630
10626
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
10631
- int64_t row_low = 0;
10632
- int64_t row_high = ggml_nrows(tensor);
10633
- int64_t nrows_split = row_high - row_low;
10634
-
10635
- size_t size = ggml_nbytes_split(tensor, nrows_split);
10636
-
10627
+ size_t size = ggml_nbytes(tensor);
10637
10628
int64_t ne0 = tensor->ne[0];
10638
10629
10639
10630
if (ggml_is_quantized(tensor->type)) {
0 commit comments