|
| 1 | +% Part: incompleteness |
| 2 | +% Chapter: representability-in-q |
| 3 | +% Section: sigma1-completeness |
| 4 | + |
| 5 | +\documentclass[../../../include/open-logic-section]{subfiles} |
| 6 | + |
| 7 | +\begin{document} |
| 8 | + |
| 9 | +\olfileid{inc}{inp}{s1c} |
| 10 | +\olsection{\texorpdfstring{$\Sigma_1$}{Sigma-1} completeness} |
| 11 | + |
| 12 | +Despite the incompleteness of $\Th{Q}$ and its consistent, axiomatizable |
| 13 | +extensions, we have seen that $\Th{Q}$ does prove many basic facts about |
| 14 | +numerals. In fact, this can be extended quite considerably. To understand |
| 15 | +the scope of what can be proved in $\Th{Q}$, we introduce the notions of |
| 16 | +$\Delta_0$, $\Sigma_1$, and $\Pi_1$ !!{formula}s. Roughly speaking, a |
| 17 | +$\Sigma_1$ !!{formula} is one of the form $\lexists{x}!A(x)$, where $!A$ |
| 18 | +is constructed using only Boolean connectives and bounded quantifiers. |
| 19 | +We shall show that if $!A$ is a correct $\Sigma_1$ sentence, then |
| 20 | +$\Th{Q} \Proves !A$ (\olref{thm:sigma1-completeness}). |
| 21 | + |
| 22 | +\begin{defn} |
| 23 | +\ollabel{defn:correct-frm} |
| 24 | +A sentence $!A$ is \emph{correct} if $\Struct{N} \Entails !A$. |
| 25 | +\end{defn} |
| 26 | + |
| 27 | +\begin{defn} |
| 28 | +\ollabel{defn:bd-quant} |
| 29 | +A \emph{bounded existential !!{formula}} is one of the form |
| 30 | +$\lexists[x][(x < t \land !A(x))]$ where $t$ is any term, which we |
| 31 | +conventionally write as $\bexists{x < t}{!A(x)}$. |
| 32 | +% |
| 33 | +A \emph{bounded universal !!{formula}} is one of the form |
| 34 | +$\lforall[x][(x < t \lif !A(x))]$ where $t$ is any term, which we |
| 35 | +conventionally write as $\bforall{x < t}{!A(x)}$. |
| 36 | +\end{defn} |
| 37 | + |
| 38 | +\begin{defn} |
| 39 | +\ollabel{defn:delta0-sigma1-pi1-frm} |
| 40 | +A !!{formula} $!B$ is $\Delta_0$ if it is built up from atomic |
| 41 | +!!{formula}s using only Boolean connectives and bounded quantification. |
| 42 | +% |
| 43 | +A !!{formula} $!A$ is $\Sigma_1$ if $!A \ident \lexists[x][!B(x)]$ |
| 44 | +where $!B$ is $\Delta_0$. |
| 45 | +% |
| 46 | +A !!{formula} $!C$ is \emph{generalized $\Sigma_1$} if it can be |
| 47 | +constructed from $\Delta_0$ !!{formula}s using only conjunction, |
| 48 | +disjunction, implication, bounded universal quantification, and |
| 49 | +unbounded existential quantification. |
| 50 | +% |
| 51 | +A formula $!A$ is $\Pi_1$ if $!A \ident \lforall[x][!B(x)]$ |
| 52 | +where $!B$ is $\Delta_0$. |
| 53 | +% |
| 54 | +A !!{formula} $!C$ is \emph{generalized $\Pi_1$} if it can be |
| 55 | +constructed from $\Delta_0$ !!{formula}s using only conjunction, |
| 56 | +disjunction, implication, bounded existential quantification, and |
| 57 | +unbounded universal quantification. |
| 58 | +\end{defn} |
| 59 | + |
| 60 | +\begin{lem} |
| 61 | +\ollabel{lem:q-proves-clterm-id} Suppose $t$ is a closed term such that |
| 62 | +$\Assign{t}{N} = n$. Then $\Th{Q} \Proves \eq[t][\num n]$. |
| 63 | +\end{lem} |
| 64 | + |
| 65 | +\begin{proof} |
| 66 | +We prove this by induction on the complexity of $t$. For the base case, |
| 67 | +${\Obj 0}^\Struct{N} = 0$, and $\Th{Q} \Proves \eq[\Obj 0][\num 0]$ |
| 68 | +since $\num 0 \ident \Obj 0$. |
| 69 | +% |
| 70 | +For the inductive case, let $t_1$ and $t_2$ be terms such that |
| 71 | +$t_1^\Struct{N} = n_1$, $t_2^\Struct{N} = n_2$, |
| 72 | +$\Th{Q} \Proves \eq[t_1][\num n_1]$, and |
| 73 | +$\Th{Q} \Proves \eq[t_2][\num n_2]$. |
| 74 | + |
| 75 | +Then $(t_1')^\Struct{N} = n_1 + 1$, and we have that $\Th{Q} \Proves |
| 76 | +\eq[t_1'][{\num n_1}']$ by the first-order rules for identity applied |
| 77 | +to the induction hypothesis and the !!{formula} |
| 78 | +$\eq[\num{n_1}'][\num{n_1}']$, |
| 79 | +so we have $\Th{Q} \Proves \eq[t_1'][\num{n_1 + 1}]$ |
| 80 | +by the definition of numerals. |
| 81 | + |
| 82 | +For sums we have |
| 83 | +$$ |
| 84 | + (t_1 + t_2)^\mathfrak{N} |
| 85 | + = t_1^\mathfrak{N} + t_2^\mathfrak{N} |
| 86 | + = n_1 + n_2. |
| 87 | +$$ |
| 88 | +By the induction hypothesis and the rules for identity, |
| 89 | +$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + t_2]$, and then |
| 90 | +$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + \num n_2]$ |
| 91 | +by a second application of the rules for identity. |
| 92 | +By \olref[inc][req][bre]{lem:q-proves-add}, |
| 93 | +$\Th{Q} \Proves \eq[\num n_1 + \num n_2][\num{n_1 + n_2}]$, |
| 94 | +so $\Th{Q} \Proves \eq[t_1 + t_2][\num{n_1 + n_2}]$. |
| 95 | + |
| 96 | +Similar reasoning also works for $\times$, using |
| 97 | +\olref[inc][req][bre]{lem:q-proves-mult}. |
| 98 | +% |
| 99 | +Since this exhausts the closed terms of arithmetic, we have that |
| 100 | +$\Th{Q} \Proves \eq[t][\num n]$ for all closed terms $t$ such that |
| 101 | +$t^\Struct{N} = n$. |
| 102 | +\end{proof} |
| 103 | + |
| 104 | +\begin{prob} |
| 105 | +Prove in detail the part of \olref{lem:q-proves-clterm-id} |
| 106 | +involving $\times$. |
| 107 | +\end{prob} |
| 108 | + |
| 109 | +\begin{lem} |
| 110 | +\ollabel{lem:atomic-completeness} |
| 111 | +Suppose $t_1$ and $t_2$ are closed terms. Then |
| 112 | +\begin{enumerate} |
| 113 | +\item If $t_1^\Struct{N} = t_2^\Struct{N}$, |
| 114 | + then $\Th{Q} \Proves \eq[t_1][t_2]$. |
| 115 | +\item If $t_1^\Struct{N} \neq t_2^\Struct{N}$, |
| 116 | + then $\Th{Q} \Proves \eq/[t_1][t_2]$. |
| 117 | +\item If $t_1^\Struct{N} < t_2^\Struct{N}$, |
| 118 | + then $\Th{Q} \Proves t_1 < t_2$. |
| 119 | +\item If $t_2^\Struct{N} \leq t_1^\Struct{N}$, |
| 120 | + then $\Th{Q} \Proves \lnot(t_1 < t_2)$. |
| 121 | +\end{enumerate} |
| 122 | +\end{lem} |
| 123 | + |
| 124 | +\begin{proof} |
| 125 | +Given terms $t_1$ and $t_2$, we fix $n = t_1^\mathfrak{N}$ and |
| 126 | +$m = t_2^\mathfrak{N}$. |
| 127 | + |
| 128 | +Suppose $!A \ident t_1 = t_2$. By \olref{lem:q-proves-clterm-id}, |
| 129 | +$\Th{Q} \Proves \eq[t_1][\num n]$ and $\Th{Q} \Proves \eq[t_2][\num n]$. |
| 130 | +If $n = m$, then $\Th{Q} \Proves \eq[\num n][\num m]$ and hence |
| 131 | +$\Th{Q} \Proves \eq[t_1][t_2]$ by the transitivity of identity. |
| 132 | +If $n \neq m$ then $\Th{Q} \Proves \eq/[\num n][\num m]$, |
| 133 | +and by the transitivity of identity again, |
| 134 | +$\Th{Q} \Proves \eq/[t_1][t_2]$. |
| 135 | + |
| 136 | +Now let $!A \ident t_1 < t_2$. For both cases, we rely on axiom $!Q_8$, |
| 137 | +which states that $x < y \leftrightarrow \lexists[z][\eq[z' + x][y]]$ |
| 138 | +for all $x,y$. |
| 139 | + |
| 140 | +Suppose $\Sat{N}{t_1 < t_2}$. Then there exists some $k \in \Nat$ |
| 141 | +such that $n + k + 1 = m$. By \olref{lem:q-proves-clterm-id}, |
| 142 | +$\Th{Q} \Proves \eq[t_1][\num n]$ and $\Th{Q} \Proves \eq[t_2][\num m]$, |
| 143 | +and by the first part of this lemma, |
| 144 | +$\Th{Q} \Proves \eq[\num n + {\num k}'][\num m]$. |
| 145 | +By the transitivity of identity it follows that |
| 146 | +$\Th{Q} \Proves \eq[{\num k}' + t_1][t_2]$, |
| 147 | +so $\Th{Q} \Proves \lexists[z][\eq[z' + t_1][t_2]]$. |
| 148 | +By the right-to-left direction of $!Q_8$, $\Th{Q} \Proves t_1 < t_2$. |
| 149 | + |
| 150 | +Suppose instead that $\Sat/{N}{t_1 < t_2}$, i.e.\ $m \leq n$. |
| 151 | +% |
| 152 | +We work in $\Th{Q}$ and assume that $t_1 < t_2$. By the left-to-right |
| 153 | +direction of $!Q_8$, there is some $z$ such that $\eq[z' + t_1][t_2]$. |
| 154 | +Since $\Th{Q} \Proves \eq[t_1][\num n]$ and |
| 155 | +$\Th{Q} \Proves \eq[t_2][\num m]$, $\eq[z' + \num n][\num m]$. |
| 156 | +% |
| 157 | +By an external induction on $m$ using $!Q_5$, |
| 158 | +$\eq[z' + \num{n - m}][\Obj 0]$. |
| 159 | +If $m = n$ then $\eq/[z'][\Obj 0]$, giving a contradiction via $!Q_3$. |
| 160 | +If $m < n$ then $\eq[(z' + \num{n - m - 1})'][\Obj 0]$ by $!Q_5$ again, |
| 161 | +giving a contradiction via $!Q_3$. |
| 162 | +So $\Th{Q} \Proves \lnot(t_1 < t_2)$. |
| 163 | +\end{proof} |
| 164 | + |
| 165 | +\begin{lem} |
| 166 | +\ollabel{lem:boolean-completeness} |
| 167 | +Suppose $!A$ and $!B$ are either atomic !!{formula}s, |
| 168 | +or are built up from atomic !!{formula}s using only |
| 169 | +Boolean connectives. |
| 170 | +\begin{enumerate} |
| 171 | +\item If $(!A \land !B)$ is correct, |
| 172 | + then $\Th{Q} \Proves (!A \land !B)$. |
| 173 | +% |
| 174 | +\item If $\lnot(!A \land !B)$ is correct, |
| 175 | + then $\Th{Q} \Proves \lnot(!A \land !B)$. |
| 176 | +% |
| 177 | +\item If $(!A \lor !B)$ is correct, |
| 178 | + then $\Th{Q} \Proves (!A \lor !B)$. |
| 179 | +% |
| 180 | +\item If $\lnot(!A \lor !B)$ is correct, |
| 181 | + then $\Th{Q} \Proves (!A \lor !B)$. |
| 182 | +% |
| 183 | +\item If $\lnot !A$ is correct, |
| 184 | + then $\Th{Q} \Proves \lnot !A$. |
| 185 | +\end{enumerate} |
| 186 | +\end{lem} |
| 187 | + |
| 188 | +\begin{proof} |
| 189 | +We prove this by induction on formula complexity. |
| 190 | +% |
| 191 | +\begin{enumerate} |
| 192 | +\item Suppose $(!A \land !B)$ is correct, so $!A$ and $!B$ |
| 193 | +are correct. By the induction hypothesis, $\Th{Q} \Proves !A$ |
| 194 | +and $\Th{Q} \Proves !B$, so $\Th{Q} \Proves (!A \land !B)$ |
| 195 | +by logic. |
| 196 | +% |
| 197 | +\item Suppose $\lnot(!A \land !B)$ is correct, so either |
| 198 | +$\lnot !A$ or $\lnot !B$ are correct. For concreteness, and |
| 199 | +without loss of generality, suppose the former. Then |
| 200 | +$\Th{Q} \Proves \lnot !A$ by the induction hypothesis, and |
| 201 | +hence $\Th{Q} \Proves \lnot(!A \land !B)$ by logic. |
| 202 | +% |
| 203 | +\item Suppose $(!A \lor !B)$ is correct, so either |
| 204 | +$!A$ is correct or $!B$ is correct. Suppose the former. |
| 205 | +Then by the induction hypothesis $\Th{Q} \Proves !A$, and |
| 206 | +hence $\Th{Q} \Proves (!A \lor !B)$ by logic. |
| 207 | +% |
| 208 | +\item Suppose $\lnot(!A \lor !B)$ is correct, so $\lnot !A$ |
| 209 | +and $\lnot !B$ are correct. Then $\Th{Q} \Proves \lnot !A$ |
| 210 | +and $\Th{Q} \Proves \lnot !B$ by the induction hypothesis. |
| 211 | +Consequently, $\Th{Q} \Proves \lnot(!A \land !B)$ by logic. |
| 212 | +% |
| 213 | +\item Suppose $\lnot !A$ is correct, so $!A$ is not correct |
| 214 | +and $\Th{Q} \not\Proves !A$. Either $!A$ is atomic or $!A$ |
| 215 | +has the form $\lnot\lnot !B$, $\lnot(!B \land !C)$, or |
| 216 | +$\lnot(!B \lor !C)$. If $!A$ is atomic then by |
| 217 | +\olref{lem:atomic-completeness}, $\Th{Q} \Proves \lnot !A$. |
| 218 | +The other cases are dealt with above, except $\lnot\lnot !B$. |
| 219 | +By logic this is provably equivalent (in $\Th{Q}$) to $!B$, |
| 220 | +which is correct since $\lnot !A \ident \lnot\lnot !B$ is |
| 221 | +correct, so by the induction hypothesis we have that |
| 222 | +$\Th{Q} \Proves \lnot !A$. |
| 223 | +\end{enumerate} |
| 224 | +\end{proof} |
| 225 | + |
| 226 | +\begin{lem} |
| 227 | +\ollabel{lem:bounded-quant-equiv} |
| 228 | +Suppose $!A$ is a !!{formula}. Then |
| 229 | +\begin{enumerate} |
| 230 | +\item $\Th{Q} \Proves \bforall{x<t}{!A(x)}$ iff $\Th{Q} \Proves |
| 231 | + !A(\num 0) \land \dotsc \land !A(\num{t^\Struct{N}-1})$. |
| 232 | +\item $\Th{Q} \Proves \bexists{x<t}{!A(x)}$ iff $\Th{Q} \Proves |
| 233 | + !A(\num 0) \lor \dotsc \lor !A(\num{t^\Struct{N}-1})$. |
| 234 | +\end{enumerate} |
| 235 | +\end{lem} |
| 236 | + |
| 237 | +\begin{proof} |
| 238 | + We prove the case for the bounded universal quantifier. |
| 239 | + If $t^\Struct{N} = 0$ then the left-hand side of the |
| 240 | + equivalence is provable in $\Th{Q}$, because there is no |
| 241 | + $x<\num 0$ by \olref[inc][req][min]{lem:less-zero}. |
| 242 | + Similarly, we can take an empty disjunction to be simply |
| 243 | + $\ltrue$, which is also provable in $\Th{Q}$. |
| 244 | + % |
| 245 | + We therefore suppose that $t^\Struct{N} = k+1$ for some |
| 246 | + natural number $k$. By \olref{lem:q-proves-clterm-id} we |
| 247 | + can assume that we are working with a formula of the form |
| 248 | + $\bforall{x<\num{k+1}}{!A(x)}$. |
| 249 | + |
| 250 | + Suppose that $\Th{Q} \Proves \bforall{x<\num{k+1}}{!A(x)}$, |
| 251 | + and let $n \leq k$. Since $\Th{Q} \Proves \num n < \num{k+1}$ |
| 252 | + by \olref{lem:atomic-completeness}, it follows by logic that |
| 253 | + $\Th{Q} \Proves !A(\num n)$. Applying this fact $k+1$ times |
| 254 | + for each $n \leq k$, we get that $\Th{Q} \Proves !A(\num 0) |
| 255 | + \land \dotsc \land !A(\num k)$ as desired. |
| 256 | + |
| 257 | + For the other direction, suppose that $\Th{Q} \Proves |
| 258 | + !A(\num 0) \land \dotsc \land !A(\num k)$. Working in |
| 259 | + $\Th{Q}$, suppose that $x < \num{k+1}$. |
| 260 | + By \olref[inc][req][min]{lem:less-nsucc} we have that |
| 261 | + $x = \num 0 \lor \dotsc \lor x = \num k$, so by logic it |
| 262 | + follows that $!A(x)$, and hence the universal claim |
| 263 | + $\bforall{x<\num{k+1}}!A(x)$ follows. |
| 264 | + |
| 265 | + The proof of the equivalence for bounded existentially |
| 266 | + quantified formulas is similar. |
| 267 | +\end{proof} |
| 268 | + |
| 269 | +\begin{prob} |
| 270 | +Give a detailed proof of the existential case in |
| 271 | +\olref{lem:bounded-quant-equiv}. |
| 272 | +\end{prob} |
| 273 | + |
| 274 | +\begin{lem} |
| 275 | +\ollabel{lem:delta0-completeness} |
| 276 | +If $!A$ is a correct $\Delta_0$ sentence, |
| 277 | +then $\Th{Q} \Proves !A$. |
| 278 | +\end{lem} |
| 279 | + |
| 280 | +\begin{proof} |
| 281 | +By induction on !!{formula} complexity. |
| 282 | +% |
| 283 | +Suppose $!A$ is a correct atomic formula. Then |
| 284 | +$\Th{Q} \vdash !A$ by \olref{lem:atomic-completeness}. |
| 285 | +% |
| 286 | +If $!A$ is a Boolean combination of correct $\Delta_0$ |
| 287 | +formulas, we apply \olref{lem:boolean-completeness}. |
| 288 | +% |
| 289 | +If $!A$ has the form $\bforall{x<t}!B(x)$, |
| 290 | +then $\Th{Q} \Proves \bforall{x<t}!B(x) \liff |
| 291 | +!B(\num 0) \land \dotsc !B(\num{t^\Struct{N}-1})$ by |
| 292 | +\olref{lem:bounded-quant-equiv}. By the induction |
| 293 | +hypothesis, if $!B(\num n)$ is correct for all |
| 294 | +$n < t^\Struct{N}$ then $\Th{Q} \Proves !B(\num 0) |
| 295 | +\land \dotsc !B(\num t-1)$, so $\Th{Q} \Proves |
| 296 | +\bforall{x<t}!B(x)$. The case for bounded existential |
| 297 | +quantification parallels this one. |
| 298 | +\end{proof} |
| 299 | + |
| 300 | +\begin{thm} |
| 301 | +\ollabel{thm:sigma1-completeness} |
| 302 | +If $!A$ is a correct $\Sigma_1$ sentence, |
| 303 | +then $\Th{Q} \Proves !A$. |
| 304 | +\end{thm} |
| 305 | + |
| 306 | +\begin{proof} |
| 307 | +Let $\lexists{x}!A(x)$ be a correct $\Sigma_1$ sentence. |
| 308 | +By correctness there exists a natural number $n$ and a |
| 309 | +variable assignment $s$ such that $s(x) = n$ and |
| 310 | +$\Struct{N},s \Entails !A(x)$. By standard facts about |
| 311 | +the satisfaction relation it follows that |
| 312 | +$\Struct{N} \Entails !A(\num n)$. But $!A(\num n)$ is a |
| 313 | +$\Delta_0$ formula, so by \olref{lem:delta0-completeness} |
| 314 | +we have that $\Th{Q} \Proves !A(\num n)$, and hence by |
| 315 | +logic we also have that $\Th{Q} \Proves \exists{x}!A(x)$. |
| 316 | +\end{proof} |
| 317 | + |
| 318 | +Note that $\Sigma_1$ !!{formula}s are not closed under Boolean |
| 319 | +operations. For example, $\OProv[\Th{PA}](x)$ is a $\Sigma_1$ |
| 320 | +!!{formula} but $\lnot\OProv[\Th{PA}](x)$ is not. One can show that |
| 321 | +there is a $\Sigma_1$ sentence $!B$ such that |
| 322 | +$\Th{PA} \Proves \lnot!B \liff !G_\Th{PA}$. |
| 323 | +Since, if $\Th{PA}$ is consistent, $\Th{PA} \Proves/ !G_\Th{PA}$ |
| 324 | +by the first incompleteness theorem, $\Th{PA} \Proves/ \lnot!B$ and |
| 325 | +a fortiori $\Th{Q} \Proves/ \lnot!B$. $\lnot!B$ is therefore not a |
| 326 | +$\Sigma_1$ !!{formula}, since this would contradict |
| 327 | +\olref{thm:sigma1-completeness}. |
| 328 | + |
| 329 | +\end{document} |
0 commit comments