@@ -3,13 +3,13 @@ An algorithm-focused interface for common llm training, continual learning, and
33
44## Support Matrix
55
6- | Algorithm | InstructLab-Training | PEFT | VERL | Status |
7- | -----------| ---------------------| ------| ------| --------|
8- | ** Supervised Fine-tuning (SFT)** | ✅ | - | - | Implemented |
9- | Continual Learning (OSFT) | 🔄 | 🔄 | - | Planned |
10- | Direct Preference Optimization (DPO) | - | - | 🔄 | Planned |
11- | Low-Rank Adaptation (LoRA) | 🔄 | 🔄 | - | Planned |
12- | Group Relative Policy Optimization (GRPO) | - | - | 🔄 | Planned |
6+ | Algorithm | InstructLab-Training | RHAI Innovation Mini-Trainer | PEFT | VERL | Status |
7+ | -----------| ---------------------| --------------- | ------ | ------| --------|
8+ | ** Supervised Fine-tuning (SFT)** | ✅ | - | - | - | Implemented |
9+ | Continual Learning (OSFT) | 🔄 | ✅ | 🔄 | - | Planned |
10+ | Direct Preference Optimization (DPO) | - | - | - | 🔄 | Planned |
11+ | Low-Rank Adaptation (LoRA) | 🔄 | - | 🔄 | - | Planned |
12+ | Group Relative Policy Optimization (GRPO) | - | - | - | 🔄 | Planned |
1313
1414** Legend:**
1515- ✅ Implemented and tested
@@ -18,7 +18,8 @@ An algorithm-focused interface for common llm training, continual learning, and
1818
1919## Implemented Algorithms
2020
21- ### [ Supervised Fine-tuning (SFT)] ( examples/sft_usage.md )
21+ ### [ Supervised Fine-tuning (SFT)] ( examples/docs/sft_usage.md )
22+
2223Fine-tune language models on supervised datasets with support for:
2324- Single-node and multi-node distributed training
2425- Configurable training parameters (epochs, batch size, learning rate, etc.)
@@ -36,6 +37,32 @@ result = sft(
3637)
3738```
3839
40+ ### [ Orthogonal Subspace Fine-Tuning (OSFT)] ( examples/docs/osft_usage.md )
41+
42+ OSFT allows you to fine-tune models while controlling how much of its
43+ existing behavior to preserve. Currently we have support for:
44+
45+ - Single-node and multi-node distributed training
46+ - Configurable training parameters (epochs, batch size, learning rate, etc.)
47+ - RHAI Innovation Mini-Trainer backend integration
48+
49+ Here's a quick and minimal way to get started with OSFT:
50+
51+ ``` python
52+ from training_hub import osft
53+
54+ result = osft(
55+ model_path = " /path/to/model" ,
56+ data_path = " /path/to/data.jsonl" ,
57+ ckpt_output_dir = " /path/to/outputs" ,
58+ unfreeze_rank_ratio = 0.25 ,
59+ effective_batch_size = 16 ,
60+ max_tokens_per_gpu = 2048 ,
61+ max_seq_len = 1024 ,
62+ learning_rate = 5e-6 ,
63+ )
64+ ```
65+
3966## Installation
4067
4168### Basic Installation
0 commit comments