|
| 1 | +//! Complete projective formulas for prime order elliptic curves as described |
| 2 | +//! in [Renes-Costello-Batina 2015]. |
| 3 | +//! |
| 4 | +//! [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| 5 | +
|
| 6 | +#![allow(clippy::op_ref)] |
| 7 | + |
| 8 | +use ff::Field; |
| 9 | + |
| 10 | +/// Affine point whose coordinates are represented by the given field element. |
| 11 | +pub type AffinePoint<Fe> = (Fe, Fe); |
| 12 | + |
| 13 | +/// Projective point whose coordinates are represented by the given field element. |
| 14 | +pub type ProjectivePoint<Fe> = (Fe, Fe, Fe); |
| 15 | + |
| 16 | +/// Implements the complete addition formula from [Renes-Costello-Batina 2015] |
| 17 | +/// (Algorithm 4). |
| 18 | +/// |
| 19 | +/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| 20 | +#[inline(always)] |
| 21 | +pub fn add<Fe>( |
| 22 | + (ax, ay, az): ProjectivePoint<Fe>, |
| 23 | + (bx, by, bz): ProjectivePoint<Fe>, |
| 24 | + curve_equation_b: Fe, |
| 25 | +) -> ProjectivePoint<Fe> |
| 26 | +where |
| 27 | + Fe: Field, |
| 28 | +{ |
| 29 | + // The comments after each line indicate which algorithm steps are being |
| 30 | + // performed. |
| 31 | + let xx = ax * bx; // 1 |
| 32 | + let yy = ay * by; // 2 |
| 33 | + let zz = az * bz; // 3 |
| 34 | + let xy_pairs = ((ax + ay) * &(bx + by)) - &(xx + &yy); // 4, 5, 6, 7, 8 |
| 35 | + let yz_pairs = ((ay + az) * &(by + bz)) - &(yy + &zz); // 9, 10, 11, 12, 13 |
| 36 | + let xz_pairs = ((ax + az) * &(bx + bz)) - &(xx + &zz); // 14, 15, 16, 17, 18 |
| 37 | + |
| 38 | + let bzz_part = xz_pairs - &(curve_equation_b * &zz); // 19, 20 |
| 39 | + let bzz3_part = bzz_part.double() + &bzz_part; // 21, 22 |
| 40 | + let yy_m_bzz3 = yy - &bzz3_part; // 23 |
| 41 | + let yy_p_bzz3 = yy + &bzz3_part; // 24 |
| 42 | + |
| 43 | + let zz3 = zz.double() + &zz; // 26, 27 |
| 44 | + let bxz_part = (curve_equation_b * &xz_pairs) - &(zz3 + &xx); // 25, 28, 29 |
| 45 | + let bxz3_part = bxz_part.double() + &bxz_part; // 30, 31 |
| 46 | + let xx3_m_zz3 = xx.double() + &xx - &zz3; // 32, 33, 34 |
| 47 | + |
| 48 | + ( |
| 49 | + (yy_p_bzz3 * &xy_pairs) - &(yz_pairs * &bxz3_part), // 35, 39, 40 |
| 50 | + (yy_p_bzz3 * &yy_m_bzz3) + &(xx3_m_zz3 * &bxz3_part), // 36, 37, 38 |
| 51 | + (yy_m_bzz3 * &yz_pairs) + &(xy_pairs * &xx3_m_zz3), // 41, 42, 43 |
| 52 | + ) |
| 53 | +} |
| 54 | + |
| 55 | +/// Implements the complete mixed addition formula from |
| 56 | +/// [Renes-Costello-Batina 2015] (Algorithm 5). |
| 57 | +/// |
| 58 | +/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| 59 | +#[inline(always)] |
| 60 | +pub fn add_mixed<Fe>( |
| 61 | + (ax, ay, az): ProjectivePoint<Fe>, |
| 62 | + (bx, by): AffinePoint<Fe>, |
| 63 | + curve_equation_b: Fe, |
| 64 | +) -> ProjectivePoint<Fe> |
| 65 | +where |
| 66 | + Fe: Field, |
| 67 | +{ |
| 68 | + // The comments after each line indicate which algorithm steps are being |
| 69 | + // performed. |
| 70 | + let xx = ax * &bx; // 1 |
| 71 | + let yy = ay * &by; // 2 |
| 72 | + let xy_pairs = ((ax + &ay) * &(bx + &by)) - &(xx + &yy); // 3, 4, 5, 6, 7 |
| 73 | + let yz_pairs = (by * &az) + &ay; // 8, 9 (t4) |
| 74 | + let xz_pairs = (bx * &az) + &ax; // 10, 11 (y3) |
| 75 | + |
| 76 | + let bz_part = xz_pairs - &(curve_equation_b * &az); // 12, 13 |
| 77 | + let bz3_part = bz_part.double() + &bz_part; // 14, 15 |
| 78 | + let yy_m_bzz3 = yy - &bz3_part; // 16 |
| 79 | + let yy_p_bzz3 = yy + &bz3_part; // 17 |
| 80 | + |
| 81 | + let z3 = az.double() + &az; // 19, 20 |
| 82 | + let bxz_part = (curve_equation_b * &xz_pairs) - &(z3 + &xx); // 18, 21, 22 |
| 83 | + let bxz3_part = bxz_part.double() + &bxz_part; // 23, 24 |
| 84 | + let xx3_m_zz3 = xx.double() + &xx - &z3; // 25, 26, 27 |
| 85 | + |
| 86 | + ( |
| 87 | + (yy_p_bzz3 * &xy_pairs) - &(yz_pairs * &bxz3_part), // 28, 32, 33 |
| 88 | + (yy_p_bzz3 * &yy_m_bzz3) + &(xx3_m_zz3 * &bxz3_part), // 29, 30, 31 |
| 89 | + (yy_m_bzz3 * &yz_pairs) + &(xy_pairs * &xx3_m_zz3), // 34, 35, 36 |
| 90 | + ) |
| 91 | +} |
| 92 | + |
| 93 | +/// Implements the exception-free point doubling formula from |
| 94 | +/// [Renes-Costello-Batina 2015] (Algorithm 6). |
| 95 | +/// |
| 96 | +/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060 |
| 97 | +#[inline(always)] |
| 98 | +pub fn double<Fe>((x, y, z): ProjectivePoint<Fe>, curve_equation_b: Fe) -> ProjectivePoint<Fe> |
| 99 | +where |
| 100 | + Fe: Field, |
| 101 | +{ |
| 102 | + // The comments after each line indicate which algorithm steps are being |
| 103 | + // performed. |
| 104 | + let xx = x.square(); // 1 |
| 105 | + let yy = y.square(); // 2 |
| 106 | + let zz = z.square(); // 3 |
| 107 | + let xy2 = (x * &y).double(); // 4, 5 |
| 108 | + let xz2 = (x * &z).double(); // 6, 7 |
| 109 | + |
| 110 | + let bzz_part = (curve_equation_b * &zz) - &xz2; // 8, 9 |
| 111 | + let bzz3_part = bzz_part.double() + &bzz_part; // 10, 11 |
| 112 | + let yy_m_bzz3 = yy - &bzz3_part; // 12 |
| 113 | + let yy_p_bzz3 = yy + &bzz3_part; // 13 |
| 114 | + let y_frag = yy_p_bzz3 * &yy_m_bzz3; // 14 |
| 115 | + let x_frag = yy_m_bzz3 * &xy2; // 15 |
| 116 | + |
| 117 | + let zz3 = zz.double() + &zz; // 16, 17 |
| 118 | + let bxz2_part = (curve_equation_b * &xz2) - &(zz3 + &xx); // 18, 19, 20 |
| 119 | + let bxz6_part = bxz2_part.double() + &bxz2_part; // 21, 22 |
| 120 | + let xx3_m_zz3 = xx.double() + &xx - &zz3; // 23, 24, 25 |
| 121 | + |
| 122 | + let dy = y_frag + &(xx3_m_zz3 * &bxz6_part); // 26, 27 |
| 123 | + let yz2 = (y * &z).double(); // 28, 29 |
| 124 | + let dx = x_frag - &(bxz6_part * &yz2); // 30, 31 |
| 125 | + let dz = (yz2 * &yy).double().double(); // 32, 33, 34 |
| 126 | + |
| 127 | + (dx, dy, dz) |
| 128 | +} |
0 commit comments