Skip to content

Latest commit

 

History

History
executable file
·
150 lines (139 loc) · 3.82 KB

22. Generate Parentheses.md

File metadata and controls

executable file
·
150 lines (139 loc) · 3.82 KB

22. Generate Parentheses

Question:

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

Thinking:

  • Method1: Recursive
	class Solution {
	    public List<String> generateParenthesis(int n) {
	        List<String> result = new ArrayList<>();
	        bp(result, "", 0, 0, n);
	        return result;
	    }
	    private void bp(List<String> result, String par, int left, int right, int n){
	        //对于某一个点,如果left和right个数都是n,说明所有能添加的(和)都已经添加完了。
	        if(left == n && right == n){
	            result.add(par);
	            return;
	        }
	        //添加(的条件:(的个数小于n
	        if(left < n) bp(result, par+"(", left+1, right, n);
	        //添加)的条件:)的个数小于(
	        if(right < left) bp(result, par+")", left, right+1, n);
	    }
	}
  • Method2:Recursive
	class Solution {
	    public List<String> generateParenthesis(int n) {
	        List<String> result = new ArrayList<String>();
	        backtrace(result, "", n, n);
	        return result;
	    }
	    private void backtrace(List<String> result, String par, int left, int right){
	        if(left == 0 && right == 0){
	            result.add(par);
	            return;
	        }
	        if(left > 0)    backtrace(result, par+"(", left - 1, right);
	        if(right > 0 && left < right)   backtrace(result, par+")", left, right - 1);
	    }
	}

二刷

一开始就想到了用递归来做,但是没想到好的思路,还是参考了一刷时候的方法。

定义左右括号的数量(left, right),如果left大于0,则添加一个(,如果right大于0并且right大于left,则添加一个)。

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> result = new ArrayList<>();
        if(n == 0) return result;
        backtrace(result, "", n, n);
        return result;
    }
    private void backtrace(List<String> result, String s, int left, int right){
        if(left == 0 && right == 0){
            result.add(s);
            return;
        }
        if(left > 0) backtrace(result, s + "(", left - 1, right);
        if(right > 0 && right > left) backtrace(result, s + ")", left, right - 1);
    }
}

Third time

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> result = new ArrayList<>();
        if(n == 0){
            result.add("");
        }else{
            dfs(n, n, "", result);
        }
        return result;
    }
    private void dfs(int left, int right, String s, List<String> result){
        if(left == 0 && right == 0){
            result.add(s);
        }else{
            if(left > 0){
                dfs(left - 1, right, s + '(', result);
            }
            if(left < right){
                dfs(left, right - 1, s + ')', result);
            }
        }
    }
}

Fourth time

  • Method 1: recursion
     class Solution {
     	private List<String> result;
     	public List<String> generateParenthesis(int n) {
     		this.result = new ArrayList<>();
     		if(n <= 0) return result;
     		dfs("", n, n);
     		return result;
     	}
     	private void dfs(String cur, int left, int right){
     		if(left == 0 && right == 0) result.add(new String(cur));
     		else{
     			if(left > 0) dfs(cur + "(", left - 1, right);
     			if(right > left) dfs(cur + ")", left, right - 1);
     		}
     	}
     }

C++ Version

  • Method 1: traceback with restriction
     class Solution {
     private:
     	void dfs(int left, int right, string s){
     		if(left == 0 && right == 0) res_.emplace_back(s);
     		if(left > 0)    dfs(left - 1, right, s + "(");
     		if(right > left) dfs(left, right - 1, s + ")");
     	}
     	vector<string> res_;
     public:
     	vector<string> generateParenthesis(int n) {
     		if(!n) return res_;
     		dfs(n, n, "");
     		return res_;
     	}
     };