-
Notifications
You must be signed in to change notification settings - Fork 19.9k
/
Copy pathVerhoeff.java
171 lines (152 loc) · 5.71 KB
/
Verhoeff.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
package com.thealgorithms.others;
import java.util.Objects;
/**
* The Verhoeff algorithm is a checksum formula for error detection developed by
* the Dutch mathematician Jacobus Verhoeff and was first published in 1969. It
* was the first decimal check digit algorithm which detects all single-digit
* errors, and all transposition errors involving two adjacent digits.
*
* <p>
* The strengths of the algorithm are that it detects all transliteration and
* transposition errors, and additionally most twin, twin jump, jump
* transposition and phonetic errors. The main weakness of the Verhoeff
* algorithm is its complexity. The calculations required cannot easily be
* expressed as a formula. For easy calculation three tables are required:</p>
* <ol>
* <li>multiplication table</li>
* <li>inverse table</li>
* <li>permutation table</li>
* </ol>
*
* @see <a href="https://en.wikipedia.org/wiki/Verhoeff_algorithm">Wiki.
* Verhoeff algorithm</a>
*/
public final class Verhoeff {
private Verhoeff() {
}
/**
* Table {@code d}. Based on multiplication in the dihedral group D5 and is
* simply the Cayley table of the group. Note that this group is not
* commutative, that is, for some values of {@code j} and {@code k},
* {@code d(j,k) ≠ d(k, j)}.
*
* @see <a href="https://en.wikipedia.org/wiki/Dihedral_group">Wiki.
* Dihedral group</a>
*/
private static final byte[][] MULTIPLICATION_TABLE = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 0, 6, 7, 8, 9, 5},
{2, 3, 4, 0, 1, 7, 8, 9, 5, 6},
{3, 4, 0, 1, 2, 8, 9, 5, 6, 7},
{4, 0, 1, 2, 3, 9, 5, 6, 7, 8},
{5, 9, 8, 7, 6, 0, 4, 3, 2, 1},
{6, 5, 9, 8, 7, 1, 0, 4, 3, 2},
{7, 6, 5, 9, 8, 2, 1, 0, 4, 3},
{8, 7, 6, 5, 9, 3, 2, 1, 0, 4},
{9, 8, 7, 6, 5, 4, 3, 2, 1, 0},
};
/**
* The inverse table {@code inv}. Represents the multiplicative inverse of a
* digit, that is, the value that satisfies {@code d(j, inv(j)) = 0}.
*/
private static final byte[] MULTIPLICATIVE_INVERSE = {
0,
4,
3,
2,
1,
5,
6,
7,
8,
9,
};
/**
* The permutation table {@code p}. Applies a permutation to each digit
* based on its position in the number. This is actually a single
* permutation {@code (1 5 8 9 4 2 7 0)(3 6)} applied iteratively; i.e.
* {@code p(i+j,n) = p(i, p(j,n))}.
*/
private static final byte[][] PERMUTATION_TABLE = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 5, 7, 6, 2, 8, 3, 0, 9, 4},
{5, 8, 0, 3, 7, 9, 6, 1, 4, 2},
{8, 9, 1, 6, 0, 4, 3, 5, 2, 7},
{9, 4, 5, 3, 1, 2, 6, 8, 7, 0},
{4, 2, 8, 6, 5, 7, 3, 9, 0, 1},
{2, 7, 9, 3, 8, 0, 6, 4, 1, 5},
{7, 0, 4, 6, 9, 1, 3, 2, 5, 8},
};
/**
* Check input digits by Verhoeff algorithm.
*
* @param digits input to check
* @return true if check was successful, false otherwise
* @throws IllegalArgumentException if input parameter contains not only
* digits
* @throws NullPointerException if input is null
*/
public static boolean verhoeffCheck(String digits) {
checkInput(digits);
int[] numbers = toIntArray(digits);
// The Verhoeff algorithm
int checksum = 0;
for (int i = 0; i < numbers.length; i++) {
int index = numbers.length - i - 1;
byte b = PERMUTATION_TABLE[i % 8][numbers[index]];
checksum = MULTIPLICATION_TABLE[checksum][b];
}
return checksum == 0;
}
/**
* Calculate check digit for initial digits and add it tho the last
* position.
*
* @param initialDigits initial value
* @return digits with the checksum in the last position
* @throws IllegalArgumentException if input parameter contains not only
* digits
* @throws NullPointerException if input is null
*/
public static String addVerhoeffChecksum(String initialDigits) {
checkInput(initialDigits);
// Add zero to end of input value
var modifiedDigits = initialDigits + "0";
int[] numbers = toIntArray(modifiedDigits);
int checksum = 0;
for (int i = 0; i < numbers.length; i++) {
int index = numbers.length - i - 1;
byte b = PERMUTATION_TABLE[i % 8][numbers[index]];
checksum = MULTIPLICATION_TABLE[checksum][b];
}
checksum = MULTIPLICATIVE_INVERSE[checksum];
return initialDigits + checksum;
}
public static void main(String[] args) {
System.out.println("Verhoeff algorithm usage examples:");
var validInput = "2363";
var invalidInput = "2364";
checkAndPrint(validInput);
checkAndPrint(invalidInput);
System.out.println("\nCheck digit generation example:");
var input = "236";
generateAndPrint(input);
}
private static void checkAndPrint(String input) {
String validationResult = Verhoeff.verhoeffCheck(input) ? "valid" : "not valid";
System.out.println("Input '" + input + "' is " + validationResult);
}
private static void generateAndPrint(String input) {
String result = addVerhoeffChecksum(input);
System.out.println("Generate and add checksum to initial value '" + input + "'. Result: '" + result + "'");
}
private static void checkInput(String input) {
Objects.requireNonNull(input);
if (!input.matches("\\d+")) {
throw new IllegalArgumentException("Input '" + input + "' contains not only digits");
}
}
private static int[] toIntArray(String string) {
return string.chars().map(i -> Character.digit(i, 10)).toArray();
}
}