File tree Expand file tree Collapse file tree 3 files changed +2
-24
lines changed Expand file tree Collapse file tree 3 files changed +2
-24
lines changed Original file line number Diff line number Diff line change @@ -14,7 +14,7 @@ module Data.Integer.Base where
14
14
open import Algebra.Bundles.Raw
15
15
using (RawMagma; RawMonoid; RawGroup; RawNearSemiring; RawSemiring; RawRing)
16
16
open import Data.Bool.Base using (Bool; T; true; false)
17
- open import Data.Nat.Base as ℕ using (ℕ; z≤n; s≤s) hiding ( module ℕ )
17
+ open import Data.Nat.Base as ℕ using (ℕ; z≤n; s≤s)
18
18
open import Data.Sign.Base as Sign using (Sign)
19
19
open import Level using (0ℓ)
20
20
open import Relation.Binary.Core using (Rel)
@@ -140,9 +140,6 @@ record Negative (i : ℤ) : Set where
140
140
141
141
-- Instances
142
142
143
- open ℕ public
144
- using (nonZero)
145
-
146
143
instance
147
144
pos : ∀ {n} → Positive +[1+ n ]
148
145
pos = _
Original file line number Diff line number Diff line change @@ -10,9 +10,7 @@ module Data.Rational.Base where
10
10
11
11
open import Algebra.Bundles.Raw
12
12
open import Data.Bool.Base using (Bool; true; false; if_then_else_)
13
- open import Data.Integer.Base as ℤ
14
- using (ℤ; +_; +0; +[1+_]; -[1+_])
15
- hiding (module ℤ )
13
+ open import Data.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_])
16
14
open import Data.Nat.GCD
17
15
open import Data.Nat.Coprimality as C
18
16
using (Coprime; Bézout-coprime; coprime-/gcd; coprime?; ¬0-coprimeTo-2+)
@@ -178,11 +176,6 @@ NonPositive p = ℚᵘ.NonPositive (toℚᵘ p)
178
176
NonNegative : Pred ℚ 0ℓ
179
177
NonNegative p = ℚᵘ.NonNegative (toℚᵘ p)
180
178
181
- -- Instances
182
-
183
- open ℤ public
184
- using (nonZero; pos; nonNeg; nonPos0; nonPos; neg)
185
-
186
179
-- Constructors
187
180
188
181
≢-nonZero : ∀ {p} → p ≢ 0ℚ → NonZero p
@@ -209,12 +202,6 @@ nonPositive {p@(mkℚ _ _ _)} (*≤* p≤q) = ℚᵘ.nonPositive {toℚᵘ p} (
209
202
nonNegative : ∀ {p} → p ≥ 0ℚ → NonNegative p
210
203
nonNegative {p@(mkℚ _ _ _)} (*≤* p≤q) = ℚᵘ.nonNegative {toℚᵘ p} (ℚᵘ.*≤* p≤q)
211
204
212
- -- Re-export base instances so that users don't have to open
213
- -- Data.Nat.Base.
214
-
215
- open ℕ public
216
- using (nonZero)
217
-
218
205
------------------------------------------------------------------------
219
206
-- Operations on rationals
220
207
Original file line number Diff line number Diff line change @@ -12,7 +12,6 @@ open import Algebra.Bundles.Raw
12
12
open import Data.Bool.Base using (Bool; true; false; if_then_else_)
13
13
open import Data.Integer.Base as ℤ
14
14
using (ℤ; +_; +0; +[1+_]; -[1+_]; +<+; +≤+)
15
- hiding (module ℤ )
16
15
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
17
16
open import Level using (0ℓ)
18
17
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
@@ -150,11 +149,6 @@ NonPositive p = ℤ.NonPositive (↥ p)
150
149
NonNegative : Pred ℚᵘ 0ℓ
151
150
NonNegative p = ℤ.NonNegative (↥ p)
152
151
153
- -- Instances
154
-
155
- open ℤ public
156
- using (nonZero; pos; nonNeg; nonPos0; nonPos; neg)
157
-
158
152
-- Constructors and destructors
159
153
160
154
-- Note: these could be proved more elegantly using the constructors
You can’t perform that action at this time.
0 commit comments