Skip to content

Commit 69ce60c

Browse files
Revert "Re-export numeric subclass instances"
This reverts commit 91fd951.
1 parent 91fd951 commit 69ce60c

File tree

3 files changed

+2
-24
lines changed

3 files changed

+2
-24
lines changed

src/Data/Integer/Base.agda

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ module Data.Integer.Base where
1414
open import Algebra.Bundles.Raw
1515
using (RawMagma; RawMonoid; RawGroup; RawNearSemiring; RawSemiring; RawRing)
1616
open import Data.Bool.Base using (Bool; T; true; false)
17-
open import Data.Nat.Base as ℕ using (ℕ; z≤n; s≤s) hiding (module )
17+
open import Data.Nat.Base as ℕ using (ℕ; z≤n; s≤s)
1818
open import Data.Sign.Base as Sign using (Sign)
1919
open import Level using (0ℓ)
2020
open import Relation.Binary.Core using (Rel)
@@ -140,9 +140,6 @@ record Negative (i : ℤ) : Set where
140140

141141
-- Instances
142142

143-
open public
144-
using (nonZero)
145-
146143
instance
147144
pos : {n} Positive +[1+ n ]
148145
pos = _

src/Data/Rational/Base.agda

Lines changed: 1 addition & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,7 @@ module Data.Rational.Base where
1010

1111
open import Algebra.Bundles.Raw
1212
open import Data.Bool.Base using (Bool; true; false; if_then_else_)
13-
open import Data.Integer.Base as ℤ
14-
using (ℤ; +_; +0; +[1+_]; -[1+_])
15-
hiding (module )
13+
open import Data.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_])
1614
open import Data.Nat.GCD
1715
open import Data.Nat.Coprimality as C
1816
using (Coprime; Bézout-coprime; coprime-/gcd; coprime?; ¬0-coprimeTo-2+)
@@ -178,11 +176,6 @@ NonPositive p = ℚᵘ.NonPositive (toℚᵘ p)
178176
NonNegative : Pred ℚ 0ℓ
179177
NonNegative p = ℚᵘ.NonNegative (toℚᵘ p)
180178

181-
-- Instances
182-
183-
open public
184-
using (nonZero; pos; nonNeg; nonPos0; nonPos; neg)
185-
186179
-- Constructors
187180

188181
≢-nonZero : {p} p ≢ 0ℚ NonZero p
@@ -209,12 +202,6 @@ nonPositive {p@(mkℚ _ _ _)} (*≤* p≤q) = ℚᵘ.nonPositive {toℚᵘ p} (
209202
nonNegative : {p} p ≥ 0ℚ NonNegative p
210203
nonNegative {p@(mkℚ _ _ _)} (*≤* p≤q) = ℚᵘ.nonNegative {toℚᵘ p} (ℚᵘ.*≤* p≤q)
211204

212-
-- Re-export base instances so that users don't have to open
213-
-- Data.Nat.Base.
214-
215-
open public
216-
using (nonZero)
217-
218205
------------------------------------------------------------------------
219206
-- Operations on rationals
220207

src/Data/Rational/Unnormalised/Base.agda

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,6 @@ open import Algebra.Bundles.Raw
1212
open import Data.Bool.Base using (Bool; true; false; if_then_else_)
1313
open import Data.Integer.Base as ℤ
1414
using (ℤ; +_; +0; +[1+_]; -[1+_]; +<+; +≤+)
15-
hiding (module )
1615
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
1716
open import Level using (0ℓ)
1817
open import Relation.Nullary.Negation.Core using (¬_; contradiction)
@@ -150,11 +149,6 @@ NonPositive p = ℤ.NonPositive (↥ p)
150149
NonNegative : Pred ℚᵘ 0ℓ
151150
NonNegative p = ℤ.NonNegative (↥ p)
152151

153-
-- Instances
154-
155-
open public
156-
using (nonZero; pos; nonNeg; nonPos0; nonPos; neg)
157-
158152
-- Constructors and destructors
159153

160154
-- Note: these could be proved more elegantly using the constructors

0 commit comments

Comments
 (0)