-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patheig_sshopm.m
218 lines (187 loc) · 5.71 KB
/
eig_sshopm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
function [lambda,x,flag,its,x0] = eig_sshopm(A,varargin)
%EIG_SSHOPM Shifted power method for finding real eigenpair of real tensor.
%
% [LAMBDA,X]=EIG_SSHOPM(A) finds an eigenvalue (LAMBDA) and eigenvector
% (X) for the real tensor A such that Ax^{m-1} = lambda*x.
%
% [LAMBDA,X]=EIG_SSHOPM(A,parameter,value,...) can specify additional
% parameters as follows:
%
% 'Shift' : Shift for eigenvalue calculation (Default: 'Adaptive')
% 'Margin' : Margin for positive/negative definiteness in adaptive
% shift caluclation. (Default: 1e-6)
% 'MaxIts' : Maximum power method iterations (Default: 1000)
% 'Start' : Initial guess (Default: normal random vector)
% 'Tol' : Tolerance on norm of change in |lambda| (Default: 1e-15)
% 'Concave' : Treat the problem as concave rather than convex.
% (Default: true for negative shift; false otherwise.)
% 'Display' : Display every n iterations (Default: -1 for no display)
%
% [LAMBDA,X,FLAG]=EIG_SSHOPM(...) also returns a flag indicating convergence.
%
% FLAG = 0 => Succesfully terminated
% FLAG = -1 => Norm(X) = 0
% FLAG = -2 => Maximum iterations exceeded
%
% [LAMBDA,X,FLAG,IT]=EIG_SSHOPM(...) also returns the number of iterations.
%
% [LAMBDA,X,FLAG,IT,X0]=EIG_SSHOPM(...) also returns the intial guess.
%
% REFERENCES:
% * T. G. Kolda and J. R. Mayo, Shifted Power Method for Computing Tensor
% Eigenpairs, SIAM Journal on Matrix Analysis and Applications
% 32(4):1095-1124, October 2011, http://dx.doi/org/10.1137/100801482
% * T. G. Kolda and J. R. Mayo, An Adaptive Shifted Power Method for
% Computing Generalized Tensor Eigenpairs, SIAM Journal on Matrix
% Analysis and Applications 35(4):1563-1582, December 2014,
% http://dx.doi.org/0.1137/140951758
%
% See also EIG_GEAP, EIG_SSHOPMC, TENSOR, SYMMETRIZE, ISSYMMETRIC.
%
%MATLAB Tensor Toolbox.
%Copyright 2015, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.
% http://www.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2015) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in the file LICENSE.txt
%% Error checking on A
P = ndims(A);
N = size(A,1);
if ~issymmetric(A)
error('Tensor must be symmetric.')
end
%% Check inputs
p = inputParser;
p.addParamValue('Shift', 'adaptive');
p.addParamValue('MaxIts', 1000, @(x) isscalar(x) && (x > 0));
p.addParamValue('Start', [], @(x) isequal(size(x),[N 1]));
p.addParamValue('Tol', 1.0e-15, @(x) isscalar(x) && (x > 0));
p.addParamValue('Display', -1, @isscalar);
p.addParamValue('Concave', false, @islogical);
p.addParamValue('Margin', 1e-6, @(x) isscalar(x) && (x > 0));
p.parse(varargin{:});
%% Copy inputs
maxits = p.Results.MaxIts;
x0 = p.Results.Start;
shift = p.Results.Shift;
tol = p.Results.Tol;
display = p.Results.Display;
concave = p.Results.Concave;
margin = p.Results.Margin;
%% Check shift
if ~isnumeric(shift)
adaptive = true;
shift = 0;
else
adaptive = false;
end
%% Check starting vector
if isempty(x0)
x0 = 2*rand(N,1)-1;
end
if norm(x0) < eps
error('Zero starting vector');
end
%% Check concavity
if shift ~= 0
concave = (shift < 0);
end
%% Execute power method
if (display >= 0)
fprintf('TENSOR SHIFTED POWER METHOD: ');
if concave
fprintf('Concave ');
else
fprintf('Convex ');
end
fprintf('\n');
fprintf('---- --------- ----- ------------ -----\n');
fprintf('Iter Lambda Diff |newx-x| Shift\n');
fprintf('---- --------- ----- ------------ -----\n');
end
flag = -2;
x = x0 / norm(x0);
lambda = x'*ttsv(A,x,-1);
if adaptive
shift = adapt_shift(A,x,margin,concave);
end
for its = 1:maxits
newx = ttsv(A,x,-1) + shift * x;
if (concave)
newx = -newx;
end
nx = norm(newx);
if nx < eps,
flag = -1;
break;
end
newx = newx / nx;
newlambda = newx'* ttsv(A,newx,-1);
if adaptive
newshift = adapt_shift(A,newx,margin,concave);
else
newshift = shift;
end
if norm(abs(newlambda-lambda)) < tol
flag = 0;
end
if (display > 0) && ((flag == 0) || (mod(its,display) == 0))
fprintf('%4d ', its);
% Lambda
fprintf('%9.6f ', newlambda);
d = newlambda-lambda;
if (d ~= 0)
if (d < 0), c = '-'; else c = '+'; end
fprintf('%ce%+03d ', c, round(log10(abs(d))));
else
fprintf(' ');
end
% Change in X
fprintf('%8.6e ', norm(newx-x));
% Shift
fprintf('%5.2f', shift);
% Line end
fprintf('\n');
end
x = newx;
lambda = newlambda;
shift = newshift;
if flag == 0
break
end
end
%% Check results
if (display >=0)
switch(flag)
case 0
fprintf('Successful Convergence');
case -1
fprintf('Converged to Zero Vector');
case -2
fprintf('Exceeded Maximum Iterations');
otherwise
fprintf('Unrecognized Exit Flag');
end
fprintf('\n');
end
%% ----------------------------------------------------
function alpha = adapt_shift(A,x,tau,concave)
m = ndims(A);
Y = ttsv(A,x,-2);
e = eig(Y);
if concave
if max(e) <= -tau/(m^2-m)
alpha = 0;
else
alpha = -(tau/m) - ((m-1)*max(e));
end
else
if min(e) >= tau/(m^2-m)
alpha = 0;
else
alpha = (tau/m) - ((m-1)*min(e));
end
end