@@ -36,7 +36,7 @@ with AutoPyTorch
36
36
37
37
.. code-block :: none
38
38
39
- <smac.runhistory.runhistory.RunHistory object at 0x7f983433d160 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39
+ <smac.runhistory.runhistory.RunHistory object at 0x7fe9245bcd60 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
40
40
data_loader:batch_size, Value: 32
41
41
encoder:__choice__, Value: 'OneHotEncoder'
42
42
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ with AutoPyTorch
77
77
scaler:__choice__, Value: 'StandardScaler'
78
78
trainer:StandardTrainer:weighted_loss, Value: True
79
79
trainer:__choice__, Value: 'StandardTrainer'
80
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.00208282470703125 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
80
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018763542175292969 , budget=0), TrajEntry(train_perf=0.15204678362573099 , incumbent_id=1, incumbent=Configuration:
81
81
data_loader:batch_size, Value: 32
82
82
encoder:__choice__, Value: 'OneHotEncoder'
83
83
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -118,7 +118,7 @@ with AutoPyTorch
118
118
scaler:__choice__, Value: 'StandardScaler'
119
119
trainer:StandardTrainer:weighted_loss, Value: True
120
120
trainer:__choice__, Value: 'StandardTrainer'
121
- , ta_runs=1, ta_time_used=4.665428161621094 , wallclock_time=6.140820026397705 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677 , incumbent_id=2, incumbent=Configuration:
121
+ , ta_runs=1, ta_time_used=4.428625822067261 , wallclock_time=5.859556198120117 , budget=5.555555555555555), TrajEntry(train_perf=0.11695906432748537 , incumbent_id=2, incumbent=Configuration:
122
122
data_loader:batch_size, Value: 224
123
123
encoder:__choice__, Value: 'OneHotEncoder'
124
124
feature_preprocessor:KernelPCA:gamma, Value: 0.6217858094449208
@@ -151,19 +151,19 @@ with AutoPyTorch
151
151
trainer:MixUpTrainer:alpha, Value: 0.7490557199071863
152
152
trainer:MixUpTrainer:weighted_loss, Value: False
153
153
trainer:__choice__, Value: 'MixUpTrainer'
154
- , ta_runs=12 , ta_time_used=105.31449437141418 , wallclock_time=135.89934992790222 , budget=16.666666666666664 )]
155
- {'accuracy': 0.884393063583815 }
156
- | | Preprocessing | Estimator | Weight |
157
- |---:|:------------------------------------------------------------------ |:-------------------------------------------------------------------|---------:|
158
- | 0 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.42 |
159
- | 1 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.14 |
160
- | 2 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.14 |
161
- | 3 | None | KNNClassifier | 0.1 |
162
- | 4 | None | RFClassifier | 0.08 |
163
- | 5 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164
- | 6 | None | ExtraTreesClassifier | 0.04 |
165
- | 7 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
166
- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
154
+ , ta_runs=4 , ta_time_used=35.06738233566284 , wallclock_time=42.592618465423584 , budget=5.555555555555555 )]
155
+ {'accuracy': 0.8786127167630058 }
156
+ | | Preprocessing | Estimator | Weight |
157
+ |---:|:-----------------------------------------------------|:-------------------------------------------------------------------|---------:|
158
+ | 0 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.2 |
159
+ | 1 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.2 |
160
+ | 2 | SimpleImputer,NoEncoder,NoScaler,PolynomialFeatures | no embedding,ResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.18 |
161
+ | 3 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
162
+ | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
163
+ | 5 | SimpleImputer,OneHotEncoder,StandardScaler,KernelPCA | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
164
+ | 6 | SimpleImputer,NoEncoder,NoScaler,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
165
+ | 7 | None | ExtraTreesClassifier | 0.02 |
166
+ | 8 | None | KNNClassifier | 0.02 |
167
167
168
168
169
169
@@ -255,7 +255,7 @@ with AutoPyTorch
255
255
256
256
.. rst-class :: sphx-glr-timing
257
257
258
- **Total running time of the script: ** ( 9 minutes 10.157 seconds)
258
+ **Total running time of the script: ** ( 9 minutes 5.493 seconds)
259
259
260
260
261
261
.. _sphx_glr_download_examples_example_tabular_classification.py :
0 commit comments