@@ -163,7 +163,7 @@ Search for an ensemble of machine learning algorithms
163
163
.. code-block :: none
164
164
165
165
166
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f44ff53e640 >
166
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f111c41a0d0 >
167
167
168
168
169
169
@@ -197,21 +197,19 @@ Print the final ensemble performance
197
197
{'accuracy': 0.8728323699421965}
198
198
| | Preprocessing | Estimator | Weight |
199
199
|---:|:------------------------------------------------------------------|:----------------------------------------------------------|---------:|
200
- | 0 | SimpleImputer,OneHotEncoder,MinMaxScaler,Nystroem | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.26 |
201
- | 1 | None | RFLearner | 0.2 |
202
- | 2 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
203
- | 3 | None | LGBMLearner | 0.14 |
204
- | 4 | None | ETLearner | 0.08 |
205
- | 5 | None | SVMLearner | 0.08 |
200
+ | 0 | None | RFLearner | 0.38 |
201
+ | 1 | None | ETLearner | 0.26 |
202
+ | 2 | None | LGBMLearner | 0.16 |
203
+ | 3 | None | SVMLearner | 0.08 |
204
+ | 4 | None | KNNLearner | 0.04 |
205
+ | 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
206
206
| 6 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
207
- | 7 | None | KNNLearner | 0.02 |
208
- | 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
209
207
autoPyTorch results:
210
- Dataset name: ff348bc2-7f88 -11ec-8771-8b89ceeb781f
208
+ Dataset name: 62cdd663-82e8 -11ec-878d-ebb19137f5ee
211
209
Optimisation Metric: accuracy
212
210
Best validation score: 0.8596491228070176
213
- Number of target algorithm runs: 20
214
- Number of successful target algorithm runs: 16
211
+ Number of target algorithm runs: 17
212
+ Number of successful target algorithm runs: 13
215
213
Number of crashed target algorithm runs: 3
216
214
Number of target algorithms that exceeded the time limit: 1
217
215
Number of target algorithms that exceeded the memory limit: 0
@@ -272,7 +270,7 @@ Search for an ensemble of machine learning algorithms
272
270
.. code-block :: none
273
271
274
272
275
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4512fd2760 >
273
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f111c5bf340 >
276
274
277
275
278
276
@@ -303,23 +301,23 @@ Print the final ensemble performance
303
301
.. code-block :: none
304
302
305
303
{'accuracy': 0.8728323699421965}
306
- | | Preprocessing | Estimator | Weight |
307
- |---:|:--------------------------------------------------------------|:------------------------------------------------------------------- |---------:|
308
- | 0 | None | LGBMLearner | 0.36 |
309
- | 1 | None | RFLearner | 0.24 |
310
- | 2 | None | SVMLearner | 0.14 |
311
- | 3 | None | ETLearner | 0.12 |
312
- | 4 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
313
- | 5 | None | KNNLearner | 0.04 |
314
- | 6 | SimpleImputer,NoEncoder,StandardScaler,KernelPCA | no embedding,ShapedResNetBackbone ,FullyConnectedHead,nn.Sequential | 0.02 |
304
+ | | Preprocessing | Estimator | Weight |
305
+ |---:|:--------------------------------------------------------------|:----------------------------------------------------------------|---------:|
306
+ | 0 | None | RFLearner | 0.34 |
307
+ | 1 | None | ETLearner | 0.26 |
308
+ | 2 | None | LGBMLearner | 0.2 |
309
+ | 3 | None | KNNLearner | 0.08 |
310
+ | 4 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
311
+ | 5 | None | SVMLearner | 0.04 |
312
+ | 6 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone ,FullyConnectedHead,nn.Sequential | 0.02 |
315
313
autoPyTorch results:
316
- Dataset name: 6380b3f3-7f89 -11ec-8771-8b89ceeb781f
314
+ Dataset name: c98ec214-82e8 -11ec-878d-ebb19137f5ee
317
315
Optimisation Metric: accuracy
318
316
Best validation score: 0.8596491228070176
319
- Number of target algorithm runs: 21
320
- Number of successful target algorithm runs: 18
317
+ Number of target algorithm runs: 19
318
+ Number of successful target algorithm runs: 15
321
319
Number of crashed target algorithm runs: 3
322
- Number of target algorithms that exceeded the time limit: 0
320
+ Number of target algorithms that exceeded the time limit: 1
323
321
Number of target algorithms that exceeded the memory limit: 0
324
322
325
323
@@ -329,7 +327,7 @@ Print the final ensemble performance
329
327
330
328
.. rst-class :: sphx-glr-timing
331
329
332
- **Total running time of the script: ** ( 5 minutes 40.122 seconds)
330
+ **Total running time of the script: ** ( 5 minutes 40.403 seconds)
333
331
334
332
335
333
.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py :
0 commit comments