Skip to content

Commit 5905489

Browse files
author
Github Actions
committed
nabenabe0928: [fix] Change int to np.int32 for the ndarray dtype specification (#371)
1 parent dc473bb commit 5905489

31 files changed

+303
-315
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -85,17 +85,19 @@ Image Classification
8585
Pipeline Random Config:
8686
________________________________________
8787
Configuration:
88-
image_augmenter:GaussianBlur:use_augmenter, Value: False
89-
image_augmenter:GaussianNoise:sigma_offset, Value: 2.6813471803623146
90-
image_augmenter:GaussianNoise:use_augmenter, Value: True
91-
image_augmenter:RandomAffine:rotate, Value: 121
92-
image_augmenter:RandomAffine:scale_offset, Value: 0.001572340665842953
93-
image_augmenter:RandomAffine:shear, Value: 11
94-
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.3794747658517839
88+
image_augmenter:GaussianBlur:sigma_min, Value: 2.4981384751028837
89+
image_augmenter:GaussianBlur:sigma_offset, Value: 1.3265778731850062
90+
image_augmenter:GaussianBlur:use_augmenter, Value: True
91+
image_augmenter:GaussianNoise:use_augmenter, Value: False
92+
image_augmenter:RandomAffine:rotate, Value: 332
93+
image_augmenter:RandomAffine:scale_offset, Value: 0.20046574757452593
94+
image_augmenter:RandomAffine:shear, Value: 31
95+
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.14608328354295247
9596
image_augmenter:RandomAffine:use_augmenter, Value: True
96-
image_augmenter:RandomCutout:use_augmenter, Value: False
97+
image_augmenter:RandomCutout:p, Value: 0.2648052996462756
98+
image_augmenter:RandomCutout:use_augmenter, Value: True
9799
image_augmenter:Resize:use_augmenter, Value: False
98-
image_augmenter:ZeroPadAndCrop:percent, Value: 0.1087846184479066
100+
image_augmenter:ZeroPadAndCrop:percent, Value: 0.17842798149849115
99101
normalizer:__choice__, Value: 'NoNormalizer'
100102

101103
Fitting the pipeline...
@@ -175,7 +177,7 @@ Image Classification
175177
176178
.. rst-class:: sphx-glr-timing
177179

178-
**Total running time of the script:** ( 0 minutes 5.177 seconds)
180+
**Total running time of the script:** ( 0 minutes 8.128 seconds)
179181

180182

181183
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 14 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4512b33a60>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f111d1646a0>
138138
139139
140140
@@ -166,26 +166,22 @@ Print the final ensemble performance
166166
.. code-block:: none
167167
168168
{'accuracy': 0.8554913294797688}
169-
| | Preprocessing | Estimator | Weight |
170-
|---:|:----------------------------------------------------------|:-------------------------------------------------------------------|---------:|
171-
| 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
172-
| 1 | SimpleImputer,NoEncoder,Normalizer,KitchenSink | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
173-
| 2 | None | RFLearner | 0.14 |
174-
| 3 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
175-
| 4 | None | SVMLearner | 0.1 |
176-
| 5 | None | CBLearner | 0.08 |
177-
| 6 | None | KNNLearner | 0.08 |
178-
| 7 | None | ETLearner | 0.06 |
179-
| 8 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
180-
| 9 | SimpleImputer,NoEncoder,Normalizer,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
181-
| 10 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
182-
| 11 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
169+
| | Preprocessing | Estimator | Weight |
170+
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171+
| 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.46 |
172+
| 1 | None | KNNLearner | 0.14 |
173+
| 2 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174+
| 3 | None | CBLearner | 0.08 |
175+
| 4 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
176+
| 5 | None | SVMLearner | 0.06 |
177+
| 6 | None | RFLearner | 0.04 |
178+
| 7 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
183179
autoPyTorch results:
184180
Dataset name: Australian
185181
Optimisation Metric: accuracy
186182
Best validation score: 0.8713450292397661
187-
Number of target algorithm runs: 30
188-
Number of successful target algorithm runs: 27
183+
Number of target algorithm runs: 22
184+
Number of successful target algorithm runs: 19
189185
Number of crashed target algorithm runs: 2
190186
Number of target algorithms that exceeded the time limit: 1
191187
Number of target algorithms that exceeded the memory limit: 0
@@ -197,7 +193,7 @@ Print the final ensemble performance
197193
198194
.. rst-class:: sphx-glr-timing
199195

200-
**Total running time of the script:** ( 5 minutes 22.397 seconds)
196+
**Total running time of the script:** ( 5 minutes 30.060 seconds)
201197

202198

203199
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f45ad5d9d90>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f11b06d2910>
129129
130130
131131
@@ -159,21 +159,22 @@ Print the final ensemble performance
159159

160160
.. code-block:: none
161161
162-
{'r2': 0.9407884171054208}
162+
{'r2': 0.9412847640085195}
163163
| | Preprocessing | Estimator | Weight |
164164
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
165-
| 0 | None | CBLearner | 0.44 |
166-
| 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.42 |
165+
| 0 | None | CBLearner | 0.46 |
166+
| 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.4 |
167167
| 2 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168-
| 3 | None | LGBMLearner | 0.04 |
168+
| 3 | None | LGBMLearner | 0.02 |
169+
| 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
169170
autoPyTorch results:
170-
Dataset name: 8f01662f-7f85-11ec-8771-8b89ceeb781f
171+
Dataset name: bbc3bdb6-82e4-11ec-878d-ebb19137f5ee
171172
Optimisation Metric: r2
172-
Best validation score: 0.8670098636440993
173-
Number of target algorithm runs: 34
174-
Number of successful target algorithm runs: 30
175-
Number of crashed target algorithm runs: 3
176-
Number of target algorithms that exceeded the time limit: 1
173+
Best validation score: 0.8669094525651709
174+
Number of target algorithm runs: 24
175+
Number of successful target algorithm runs: 20
176+
Number of crashed target algorithm runs: 2
177+
Number of target algorithms that exceeded the time limit: 2
177178
Number of target algorithms that exceeded the memory limit: 0
178179
179180
@@ -183,7 +184,7 @@ Print the final ensemble performance
183184
184185
.. rst-class:: sphx-glr-timing
185186

186-
**Total running time of the script:** ( 5 minutes 31.087 seconds)
187+
**Total running time of the script:** ( 5 minutes 45.980 seconds)
187188

188189

189190
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**10:58.661** total execution time for **examples_20_basics** files:
8+
**11:24.168** total execution time for **examples_20_basics** files:
99

1010
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:31.087 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:45.980 | 0.0 MB |
1212
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:22.397 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:30.060 | 0.0 MB |
1414
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:05.177 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:08.128 | 0.0 MB |
1616
+--------------------------------------------------------------------------------------------------------------+-----------+--------+

development/_sources/examples/40_advanced/example_custom_configuration_space.rst.txt

Lines changed: 25 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ Search for an ensemble of machine learning algorithms
163163
.. code-block:: none
164164
165165
166-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f44ff53e640>
166+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f111c41a0d0>
167167
168168
169169
@@ -197,21 +197,19 @@ Print the final ensemble performance
197197
{'accuracy': 0.8728323699421965}
198198
| | Preprocessing | Estimator | Weight |
199199
|---:|:------------------------------------------------------------------|:----------------------------------------------------------|---------:|
200-
| 0 | SimpleImputer,OneHotEncoder,MinMaxScaler,Nystroem | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.26 |
201-
| 1 | None | RFLearner | 0.2 |
202-
| 2 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
203-
| 3 | None | LGBMLearner | 0.14 |
204-
| 4 | None | ETLearner | 0.08 |
205-
| 5 | None | SVMLearner | 0.08 |
200+
| 0 | None | RFLearner | 0.38 |
201+
| 1 | None | ETLearner | 0.26 |
202+
| 2 | None | LGBMLearner | 0.16 |
203+
| 3 | None | SVMLearner | 0.08 |
204+
| 4 | None | KNNLearner | 0.04 |
205+
| 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
206206
| 6 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
207-
| 7 | None | KNNLearner | 0.02 |
208-
| 8 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
209207
autoPyTorch results:
210-
Dataset name: ff348bc2-7f88-11ec-8771-8b89ceeb781f
208+
Dataset name: 62cdd663-82e8-11ec-878d-ebb19137f5ee
211209
Optimisation Metric: accuracy
212210
Best validation score: 0.8596491228070176
213-
Number of target algorithm runs: 20
214-
Number of successful target algorithm runs: 16
211+
Number of target algorithm runs: 17
212+
Number of successful target algorithm runs: 13
215213
Number of crashed target algorithm runs: 3
216214
Number of target algorithms that exceeded the time limit: 1
217215
Number of target algorithms that exceeded the memory limit: 0
@@ -272,7 +270,7 @@ Search for an ensemble of machine learning algorithms
272270
.. code-block:: none
273271
274272
275-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4512fd2760>
273+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f111c5bf340>
276274
277275
278276
@@ -303,23 +301,23 @@ Print the final ensemble performance
303301
.. code-block:: none
304302
305303
{'accuracy': 0.8728323699421965}
306-
| | Preprocessing | Estimator | Weight |
307-
|---:|:--------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
308-
| 0 | None | LGBMLearner | 0.36 |
309-
| 1 | None | RFLearner | 0.24 |
310-
| 2 | None | SVMLearner | 0.14 |
311-
| 3 | None | ETLearner | 0.12 |
312-
| 4 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
313-
| 5 | None | KNNLearner | 0.04 |
314-
| 6 | SimpleImputer,NoEncoder,StandardScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
304+
| | Preprocessing | Estimator | Weight |
305+
|---:|:--------------------------------------------------------------|:----------------------------------------------------------------|---------:|
306+
| 0 | None | RFLearner | 0.34 |
307+
| 1 | None | ETLearner | 0.26 |
308+
| 2 | None | LGBMLearner | 0.2 |
309+
| 3 | None | KNNLearner | 0.08 |
310+
| 4 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
311+
| 5 | None | SVMLearner | 0.04 |
312+
| 6 | SimpleImputer,NoEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
315313
autoPyTorch results:
316-
Dataset name: 6380b3f3-7f89-11ec-8771-8b89ceeb781f
314+
Dataset name: c98ec214-82e8-11ec-878d-ebb19137f5ee
317315
Optimisation Metric: accuracy
318316
Best validation score: 0.8596491228070176
319-
Number of target algorithm runs: 21
320-
Number of successful target algorithm runs: 18
317+
Number of target algorithm runs: 19
318+
Number of successful target algorithm runs: 15
321319
Number of crashed target algorithm runs: 3
322-
Number of target algorithms that exceeded the time limit: 0
320+
Number of target algorithms that exceeded the time limit: 1
323321
Number of target algorithms that exceeded the memory limit: 0
324322
325323
@@ -329,7 +327,7 @@ Print the final ensemble performance
329327
330328
.. rst-class:: sphx-glr-timing
331329

332-
**Total running time of the script:** ( 5 minutes 40.122 seconds)
330+
**Total running time of the script:** ( 5 minutes 40.403 seconds)
333331

334332

335333
.. _sphx_glr_download_examples_40_advanced_example_custom_configuration_space.py:

0 commit comments

Comments
 (0)