@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133133 .. code-block :: none
134134
135135
136- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7f96017d90 >
136+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fe257cbbe50 >
137137
138138
139139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162162
163163 .. code-block :: none
164164
165- <smac.runhistory.runhistory.RunHistory object at 0x7f7f96017130 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165+ <smac.runhistory.runhistory.RunHistory object at 0x7fe257b3a0d0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166166 data_loader:batch_size, Value: 64
167167 encoder:__choice__, Value: 'OneHotEncoder'
168168 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194194 scaler:__choice__, Value: 'StandardScaler'
195195 trainer:StandardTrainer:weighted_loss, Value: True
196196 trainer:__choice__, Value: 'StandardTrainer'
197- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012085437774658203 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
197+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0010366439819335938 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
198198 data_loader:batch_size, Value: 64
199199 encoder:__choice__, Value: 'OneHotEncoder'
200200 feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,63 +226,62 @@ Print the final ensemble performance
226226 scaler:__choice__, Value: 'StandardScaler'
227227 trainer:StandardTrainer:weighted_loss, Value: True
228228 trainer:__choice__, Value: 'StandardTrainer'
229- , ta_runs=1, ta_time_used=2.6043033599853516, wallclock_time=3.6323750019073486, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=2, incumbent=Configuration:
230- data_loader:batch_size, Value: 131
231- encoder:__choice__, Value: 'NoEncoder'
232- feature_preprocessor:KernelPCA:coef0, Value: -0.2027355777455664
233- feature_preprocessor:KernelPCA:degree, Value: 2
234- feature_preprocessor:KernelPCA:gamma, Value: 0.0029756156161293078
235- feature_preprocessor:KernelPCA:kernel, Value: 'poly'
236- feature_preprocessor:KernelPCA:n_components, Value: 4
237- feature_preprocessor:__choice__, Value: 'KernelPCA'
229+ , ta_runs=1, ta_time_used=1.9255990982055664, wallclock_time=2.953387975692749, budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
230+ data_loader:batch_size, Value: 54
231+ encoder:__choice__, Value: 'OneHotEncoder'
232+ feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
238233 imputer:categorical_strategy, Value: 'constant_!missing!'
239234 imputer:numerical_strategy, Value: 'mean'
240- lr_scheduler:CosineAnnealingWarmRestarts:T_0, Value: 20
241- lr_scheduler:CosineAnnealingWarmRestarts:T_mult, Value: 1.2502829975237466
242- lr_scheduler:__choice__, Value: 'CosineAnnealingWarmRestarts'
243- network_backbone:ShapedResNetBackbone:activation, Value: 'sigmoid'
244- network_backbone:ShapedResNetBackbone:blocks_per_group, Value: 2
245- network_backbone:ShapedResNetBackbone:max_units, Value: 21
246- network_backbone:ShapedResNetBackbone:num_groups, Value: 11
247- network_backbone:ShapedResNetBackbone:output_dim, Value: 128
248- network_backbone:ShapedResNetBackbone:resnet_shape, Value: 'stairs'
249- network_backbone:ShapedResNetBackbone:use_dropout, Value: False
250- network_backbone:ShapedResNetBackbone:use_shake_drop, Value: False
251- network_backbone:ShapedResNetBackbone:use_shake_shake, Value: False
252- network_backbone:__choice__, Value: 'ShapedResNetBackbone'
235+ lr_scheduler:CosineAnnealingLR:T_max, Value: 307
236+ lr_scheduler:__choice__, Value: 'CosineAnnealingLR'
237+ network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
238+ network_backbone:ShapedMLPBackbone:max_dropout, Value: 0.543030049110043
239+ network_backbone:ShapedMLPBackbone:max_units, Value: 35
240+ network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'hexagon'
241+ network_backbone:ShapedMLPBackbone:num_groups, Value: 3
242+ network_backbone:ShapedMLPBackbone:output_dim, Value: 18
243+ network_backbone:ShapedMLPBackbone:use_dropout, Value: True
244+ network_backbone:__choice__, Value: 'ShapedMLPBackbone'
253245 network_embedding:__choice__, Value: 'NoEmbedding'
254246 network_head:__choice__, Value: 'fully_connected'
255- network_head:fully_connected:activation, Value: 'tanh'
256- network_head:fully_connected:num_layers, Value: 4
257- network_head:fully_connected:units_layer_1, Value: 415
258- network_head:fully_connected:units_layer_2, Value: 290
259- network_head:fully_connected:units_layer_3, Value: 313
260- network_init:KaimingInit:bias_strategy, Value: 'Normal'
261- network_init:__choice__, Value: 'KaimingInit'
262- optimizer:AdamOptimizer:beta1, Value: 0.9981587455677909
263- optimizer:AdamOptimizer:beta2, Value: 0.9934737249657393
264- optimizer:AdamOptimizer:lr, Value: 0.0015351906927605823
265- optimizer:AdamOptimizer:weight_decay, Value: 0.06126849297256112
266- optimizer:__choice__, Value: 'AdamOptimizer'
247+ network_head:fully_connected:activation, Value: 'relu'
248+ network_head:fully_connected:num_layers, Value: 3
249+ network_head:fully_connected:units_layer_1, Value: 316
250+ network_head:fully_connected:units_layer_2, Value: 503
251+ network_init:SparseInit:bias_strategy, Value: 'Normal'
252+ network_init:__choice__, Value: 'SparseInit'
253+ optimizer:AdamWOptimizer:beta1, Value: 0.9489565046389004
254+ optimizer:AdamWOptimizer:beta2, Value: 0.9647522172509646
255+ optimizer:AdamWOptimizer:lr, Value: 0.0030477242366055836
256+ optimizer:AdamWOptimizer:weight_decay, Value: 0.061913730296919815
257+ optimizer:__choice__, Value: 'AdamWOptimizer'
267258 scaler:__choice__, Value: 'MinMaxScaler'
268- trainer:StandardTrainer:weighted_loss, Value: False
269- trainer:__choice__, Value: 'StandardTrainer'
270- , ta_runs=20, ta_time_used=161.57836866378784, wallclock_time=232.07247638702393, budget=50.0)]
271- {'accuracy': 0.8728323699421965}
272- | | Preprocessing | Estimator | Weight |
273- |---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
274- | 0 | None | CatBoostClassifier | 0.92 |
275- | 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
276- | 2 | SimpleImputer,NoEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
277- | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
259+ trainer:MixUpTrainer:alpha, Value: 0.8559230573827334
260+ trainer:MixUpTrainer:weighted_loss, Value: True
261+ trainer:__choice__, Value: 'MixUpTrainer'
262+ , ta_runs=18, ta_time_used=170.50614953041077, wallclock_time=220.6971218585968, budget=50.0)]
263+ {'accuracy': 0.861271676300578}
264+ | | Preprocessing | Estimator | Weight |
265+ |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
266+ | 0 | None | CatBoostClassifier | 0.28 |
267+ | 1 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
268+ | 2 | None | KNNClassifier | 0.1 |
269+ | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
270+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
271+ | 5 | None | LGBMClassifier | 0.06 |
272+ | 6 | None | RFClassifier | 0.06 |
273+ | 7 | SimpleImputer,OneHotEncoder,MinMaxScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
274+ | 8 | SimpleImputer,NoEncoder,NoScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
275+ | 9 | None | SVC | 0.04 |
276+ | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
278277
279278
280279
281280
282281
283282 .. rst-class :: sphx-glr-timing
284283
285- **Total running time of the script: ** ( 5 minutes 28.336 seconds)
284+ **Total running time of the script: ** ( 5 minutes 24.537 seconds)
286285
287286
288287.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments