@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133
133
.. code-block :: none
134
134
135
135
136
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f7f96017d90 >
136
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fe257cbbe50 >
137
137
138
138
139
139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162
162
163
163
.. code-block :: none
164
164
165
- <smac.runhistory.runhistory.RunHistory object at 0x7f7f96017130 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165
+ <smac.runhistory.runhistory.RunHistory object at 0x7fe257b3a0d0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166
166
data_loader:batch_size, Value: 64
167
167
encoder:__choice__, Value: 'OneHotEncoder'
168
168
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194
194
scaler:__choice__, Value: 'StandardScaler'
195
195
trainer:StandardTrainer:weighted_loss, Value: True
196
196
trainer:__choice__, Value: 'StandardTrainer'
197
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012085437774658203 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
197
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0010366439819335938 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
198
198
data_loader:batch_size, Value: 64
199
199
encoder:__choice__, Value: 'OneHotEncoder'
200
200
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,63 +226,62 @@ Print the final ensemble performance
226
226
scaler:__choice__, Value: 'StandardScaler'
227
227
trainer:StandardTrainer:weighted_loss, Value: True
228
228
trainer:__choice__, Value: 'StandardTrainer'
229
- , ta_runs=1, ta_time_used=2.6043033599853516, wallclock_time=3.6323750019073486, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=2, incumbent=Configuration:
230
- data_loader:batch_size, Value: 131
231
- encoder:__choice__, Value: 'NoEncoder'
232
- feature_preprocessor:KernelPCA:coef0, Value: -0.2027355777455664
233
- feature_preprocessor:KernelPCA:degree, Value: 2
234
- feature_preprocessor:KernelPCA:gamma, Value: 0.0029756156161293078
235
- feature_preprocessor:KernelPCA:kernel, Value: 'poly'
236
- feature_preprocessor:KernelPCA:n_components, Value: 4
237
- feature_preprocessor:__choice__, Value: 'KernelPCA'
229
+ , ta_runs=1, ta_time_used=1.9255990982055664, wallclock_time=2.953387975692749, budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
230
+ data_loader:batch_size, Value: 54
231
+ encoder:__choice__, Value: 'OneHotEncoder'
232
+ feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
238
233
imputer:categorical_strategy, Value: 'constant_!missing!'
239
234
imputer:numerical_strategy, Value: 'mean'
240
- lr_scheduler:CosineAnnealingWarmRestarts:T_0, Value: 20
241
- lr_scheduler:CosineAnnealingWarmRestarts:T_mult, Value: 1.2502829975237466
242
- lr_scheduler:__choice__, Value: 'CosineAnnealingWarmRestarts'
243
- network_backbone:ShapedResNetBackbone:activation, Value: 'sigmoid'
244
- network_backbone:ShapedResNetBackbone:blocks_per_group, Value: 2
245
- network_backbone:ShapedResNetBackbone:max_units, Value: 21
246
- network_backbone:ShapedResNetBackbone:num_groups, Value: 11
247
- network_backbone:ShapedResNetBackbone:output_dim, Value: 128
248
- network_backbone:ShapedResNetBackbone:resnet_shape, Value: 'stairs'
249
- network_backbone:ShapedResNetBackbone:use_dropout, Value: False
250
- network_backbone:ShapedResNetBackbone:use_shake_drop, Value: False
251
- network_backbone:ShapedResNetBackbone:use_shake_shake, Value: False
252
- network_backbone:__choice__, Value: 'ShapedResNetBackbone'
235
+ lr_scheduler:CosineAnnealingLR:T_max, Value: 307
236
+ lr_scheduler:__choice__, Value: 'CosineAnnealingLR'
237
+ network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
238
+ network_backbone:ShapedMLPBackbone:max_dropout, Value: 0.543030049110043
239
+ network_backbone:ShapedMLPBackbone:max_units, Value: 35
240
+ network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'hexagon'
241
+ network_backbone:ShapedMLPBackbone:num_groups, Value: 3
242
+ network_backbone:ShapedMLPBackbone:output_dim, Value: 18
243
+ network_backbone:ShapedMLPBackbone:use_dropout, Value: True
244
+ network_backbone:__choice__, Value: 'ShapedMLPBackbone'
253
245
network_embedding:__choice__, Value: 'NoEmbedding'
254
246
network_head:__choice__, Value: 'fully_connected'
255
- network_head:fully_connected:activation, Value: 'tanh'
256
- network_head:fully_connected:num_layers, Value: 4
257
- network_head:fully_connected:units_layer_1, Value: 415
258
- network_head:fully_connected:units_layer_2, Value: 290
259
- network_head:fully_connected:units_layer_3, Value: 313
260
- network_init:KaimingInit:bias_strategy, Value: 'Normal'
261
- network_init:__choice__, Value: 'KaimingInit'
262
- optimizer:AdamOptimizer:beta1, Value: 0.9981587455677909
263
- optimizer:AdamOptimizer:beta2, Value: 0.9934737249657393
264
- optimizer:AdamOptimizer:lr, Value: 0.0015351906927605823
265
- optimizer:AdamOptimizer:weight_decay, Value: 0.06126849297256112
266
- optimizer:__choice__, Value: 'AdamOptimizer'
247
+ network_head:fully_connected:activation, Value: 'relu'
248
+ network_head:fully_connected:num_layers, Value: 3
249
+ network_head:fully_connected:units_layer_1, Value: 316
250
+ network_head:fully_connected:units_layer_2, Value: 503
251
+ network_init:SparseInit:bias_strategy, Value: 'Normal'
252
+ network_init:__choice__, Value: 'SparseInit'
253
+ optimizer:AdamWOptimizer:beta1, Value: 0.9489565046389004
254
+ optimizer:AdamWOptimizer:beta2, Value: 0.9647522172509646
255
+ optimizer:AdamWOptimizer:lr, Value: 0.0030477242366055836
256
+ optimizer:AdamWOptimizer:weight_decay, Value: 0.061913730296919815
257
+ optimizer:__choice__, Value: 'AdamWOptimizer'
267
258
scaler:__choice__, Value: 'MinMaxScaler'
268
- trainer:StandardTrainer:weighted_loss, Value: False
269
- trainer:__choice__, Value: 'StandardTrainer'
270
- , ta_runs=20, ta_time_used=161.57836866378784, wallclock_time=232.07247638702393, budget=50.0)]
271
- {'accuracy': 0.8728323699421965}
272
- | | Preprocessing | Estimator | Weight |
273
- |---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
274
- | 0 | None | CatBoostClassifier | 0.92 |
275
- | 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
276
- | 2 | SimpleImputer,NoEncoder,MinMaxScaler,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
277
- | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
259
+ trainer:MixUpTrainer:alpha, Value: 0.8559230573827334
260
+ trainer:MixUpTrainer:weighted_loss, Value: True
261
+ trainer:__choice__, Value: 'MixUpTrainer'
262
+ , ta_runs=18, ta_time_used=170.50614953041077, wallclock_time=220.6971218585968, budget=50.0)]
263
+ {'accuracy': 0.861271676300578}
264
+ | | Preprocessing | Estimator | Weight |
265
+ |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
266
+ | 0 | None | CatBoostClassifier | 0.28 |
267
+ | 1 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
268
+ | 2 | None | KNNClassifier | 0.1 |
269
+ | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
270
+ | 4 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
271
+ | 5 | None | LGBMClassifier | 0.06 |
272
+ | 6 | None | RFClassifier | 0.06 |
273
+ | 7 | SimpleImputer,OneHotEncoder,MinMaxScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
274
+ | 8 | SimpleImputer,NoEncoder,NoScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
275
+ | 9 | None | SVC | 0.04 |
276
+ | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
278
277
279
278
280
279
281
280
282
281
283
282
.. rst-class :: sphx-glr-timing
284
283
285
- **Total running time of the script: ** ( 5 minutes 28.336 seconds)
284
+ **Total running time of the script: ** ( 5 minutes 24.537 seconds)
286
285
287
286
288
287
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments