@@ -501,7 +501,8 @@ def test_pipeline_fit(openml_id,
501
501
run_time_limit_secs = 50 ,
502
502
budget_type = 'epochs' ,
503
503
budget = 30 ,
504
- disable_file_output = disable_file_output
504
+ disable_file_output = disable_file_output ,
505
+ eval_metric = 'balanced_accuracy'
505
506
)
506
507
assert isinstance (dataset , BaseDataset )
507
508
assert isinstance (run_info , RunInfo )
@@ -511,6 +512,7 @@ def test_pipeline_fit(openml_id,
511
512
assert 'SUCCESS' in str (run_value .status )
512
513
513
514
if not disable_file_output :
515
+
514
516
if resampling_strategy in CrossValTypes :
515
517
pytest .skip ("Bug, Can't predict with cross validation pipeline" )
516
518
assert isinstance (pipeline , BaseEstimator )
@@ -522,11 +524,14 @@ def test_pipeline_fit(openml_id,
522
524
assert isinstance (score , float )
523
525
assert score > 0.8
524
526
else :
525
- assert isinstance (pipeline , BasePipeline )
526
527
# To make sure we fitted the model, there should be a
527
- # run summary object with accuracy
528
+ # run summary object
528
529
run_summary = pipeline .named_steps ['trainer' ].run_summary
529
530
assert run_summary is not None
531
+ # test to ensure balanced_accuracy is reported during training
532
+ assert 'balanced_accuracy' in run_summary .performance_tracker ['train_metrics' ][1 ].keys ()
533
+
534
+ assert isinstance (pipeline , BasePipeline )
530
535
X_test = dataset .test_tensors [0 ]
531
536
preds = pipeline .predict (X_test )
532
537
assert isinstance (preds , np .ndarray )
0 commit comments