-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy path987. Vertical Order Traversal of a Binary Tree.java
executable file
·185 lines (149 loc) · 6.22 KB
/
987. Vertical Order Traversal of a Binary Tree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
M
tags: DFS, BFS, Tree, Binary Tree, Hash Table
times: O(nlogn)
space: O(n)
Very similar to `314. Binary Tree Vertical Order Traversal` with 1 special condition: if 2 nodes at same (offset, level):
sort it by its value
#### Method1: DFS
- the special requirement causes: we have to track exact position of nodes
- Using `Node {int offset, level, val}` and `Map<offset, Map<level, List<Val>>>`:
- set all nodes to its correct position
- output all together
- the `max/min` offset allows us to loop over the map in a ordered manner (save efforts of sorting)
- time: O(n) to mark all nodes at correct spot, but `O(nlogn)` to sort the vertical array
- space: O(n), mark all nodes in the nested map
#### Method2: BFS + Hash table
- A (offset, level) has 2 nodes: use nested `Map<offset, Map<level, List<Val>>>` to track nodes
- Also need a `class Node{int offset; TreeNode node}` to build queue:
- need `offset`: queue at each level cannot derive level index
- need `TreeNode`: `Node` extends original `TreeNode` so we can queue it.
- lots code to write due to the `class Node` for BFS
```
/*
Given a binary tree, return the vertical order traversal of its nodes values.
For each node at position (X, Y), its left and right children respectively will be at positions (X-1, Y-1) and (X+1, Y-1).
Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y coordinates).
If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.
Return an list of non-empty reports in order of X coordinate. Every report will have a list of values of nodes.
Example 1:
Input: [3,9,20,null,null,15,7]
Output: [[9],[3,15],[20],[7]]
Explanation:
Without loss of generality, we can assume the root node is at position (0, 0):
Then, the node with value 9 occurs at position (-1, -1);
The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
The node with value 20 occurs at position (1, -1);
The node with value 7 occurs at position (2, -2).
Example 2:
Input: [1,2,3,4,5,6,7]
Output: [[4],[2],[1,5,6],[3],[7]]
Explanation:
The node with value 5 and the node with value 6 have the same position according to the given scheme.
However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.
Note:
The tree will have between 1 and 1000 nodes.
Each node's value will be between 0 and 1000.
*/
// Method1: DFS
class Solution {
Map<Integer, Map<Integer, List<Integer>>> map = new HashMap<>(); // map<offset, Map<level, List<Val>>>
int min = 0, max = 0;
class Node {
int offset, level, val;
public Node (int offset, int level, int val) {
this.offset = offset;
this.level = level;
this.val = val;
}
}
public List<List<Integer>> verticalTraversal(TreeNode root) {
dfs(root, 0, 0);
return flattenMap();
}
private void dfs(TreeNode node, int offset, int level) {
if (node == null) return;
map.putIfAbsent(offset, new HashMap<>());
map.get(offset).putIfAbsent(level, new ArrayList<>());
map.get(offset).get(level).add(node.val);
min = Math.min(min, offset);
max = Math.max(max, offset);
dfs(node.left, offset - 1, level + 1);
dfs(node.right, offset + 1, level + 1);
}
private List<List<Integer>> flattenMap() {
List<List<Integer>> rst = new ArrayList<>();
for (int offset = min; offset <= max; offset++) {
Map<Integer, List<Integer>> levelMap = map.get(offset);
List<Integer> levels = new ArrayList<>(levelMap.keySet());
List<Integer> list = new ArrayList<>();
Collections.sort(levels);
for (int level : levels) {
Collections.sort(levelMap.get(level));
list.addAll(levelMap.get(level));
}
rst.add(list);
}
return rst;
}
}
// Method2: BFS
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
Map<Integer, Map<Integer, List<Integer>>> map = new HashMap<>(); // map<offset, Map<level, List<Val>>>
class Node {
int offset;
TreeNode treeNode;
public Node (int offset, TreeNode treeNode) {
this.offset = offset;
this.treeNode = treeNode;
}
}
public List<List<Integer>> verticalTraversal(TreeNode root) {
Queue<Node> queue = new LinkedList<>();
queue.offer(new Node(0, root));
int min = 0, max = 0, level = 0;
while (!queue.isEmpty()) {
int size = queue.size();
while (size-- > 0) {
Node node = queue.poll();
int offset = node.offset;
populateMap(node, offset, level);
if (node.treeNode.left != null) queue.offer(new Node(offset - 1, node.treeNode.left));
if (node.treeNode.right != null) queue.offer(new Node(offset + 1, node.treeNode.right));
min = Math.min(min, offset);
max = Math.max(max, offset);
}
level++;
}
return flattenMap(min, max);
}
private void populateMap(Node node, int offset, int level) {
map.putIfAbsent(offset, new HashMap<>());
map.get(offset).putIfAbsent(level, new ArrayList<>());
map.get(offset).get(level).add(node.treeNode.val);
}
private List<List<Integer>> flattenMap(int min, int max) {
List<List<Integer>> rst = new ArrayList<>();
for (int offset = min; offset <= max; offset++) {
Map<Integer, List<Integer>> levelMap = map.get(offset);
List<Integer> levels = new ArrayList<>(levelMap.keySet());
List<Integer> list = new ArrayList<>();
Collections.sort(levels);
for (int level : levels) {
Collections.sort(levelMap.get(level));
list.addAll(levelMap.get(level));
}
rst.add(list);
}
return rst;
}
}
```