-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathPath Sum III.java
executable file
·79 lines (61 loc) · 2 KB
/
Path Sum III.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
E
1526529797
tags: Tree, DFS, Double Recursive
count所有存在的 path sum == target sum. 可以从任意点开始. 但是只能parent -> child .
#### DFS
- 对所给的input sum 做减法, 知道 sum 达到一个目标值截止
- 因为可以从任意点开始, 所以当sum达标时候, 需要继续recursive, 从而找到所有情况 (有正负数, sum可能继续增加/减少)
- 经典的 helper dfs recursive + self recursive
- 1. helper dfs recursive 处理包括root的情况
- 2. self recursive 来引领 skip root的情况.
#### 特点
- 与 `Binary Tree Longest Consecutive Sequence II` 在recursive的做法上很相似:
- 利用dfs做包括root的recursive computation
- 利用这个function自己, 做`不包括root的recursive computation`
```
/*
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf,
but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int pathSum(TreeNode root, int sum) {
if (root == null) {
return 0;
}
return dfs(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
}
private int dfs(TreeNode node, int sum) {
int count = 0;
if (node == null) return count;
count += node.val == sum ? 1 : 0;
count += dfs(node.left, sum - node.val);
count += dfs(node.right, sum - node.val);
return count;
}
}
```