|
1 | 1 | {
|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 |
| - "cell_type": "code", |
5 |
| - "execution_count": null, |
6 |
| - "id": "eca12282", |
7 | 4 | "metadata": {},
|
8 |
| - "outputs": [], |
| 5 | + "cell_type": "markdown", |
9 | 6 | "source": [
|
10 |
| - "! pip install \"pydantic>=2.0.0\" sagemaker-core" |
11 |
| - ] |
| 7 | + "# Model Builder Redesign\n", |
| 8 | + "## This notebook highlights the new changes made to ModelBuilder and related utilities\n", |
| 9 | + "\n", |
| 10 | + "- Latest Container Image Utility function\n", |
| 11 | + "- Handshake with ModelTrainer \n", |
| 12 | + "- Unified Deployment from ModelBuilder" |
| 13 | + ], |
| 14 | + "id": "609dabdc97ce0a62" |
12 | 15 | },
|
13 | 16 | {
|
14 |
| - "cell_type": "code", |
15 |
| - "execution_count": null, |
16 |
| - "id": "756ebbf2", |
17 | 17 | "metadata": {},
|
| 18 | + "cell_type": "code", |
| 19 | + "source": "alias = \"user\"", |
| 20 | + "id": "54b0ea46e1886184", |
18 | 21 | "outputs": [],
|
19 |
| - "source": [ |
20 |
| - "! pip install sagemaker-2.232.4.dev0.tar.gz" |
21 |
| - ] |
| 22 | + "execution_count": null |
22 | 23 | },
|
23 | 24 | {
|
| 25 | + "metadata": {}, |
| 26 | + "cell_type": "markdown", |
| 27 | + "source": "## Inital Setup", |
| 28 | + "id": "b421db5dfb9a7fa7" |
| 29 | + }, |
| 30 | + { |
| 31 | + "metadata": {}, |
24 | 32 | "cell_type": "code",
|
25 |
| - "execution_count": null, |
26 |
| - "id": "initial_id", |
27 |
| - "metadata": { |
28 |
| - "collapsed": true |
29 |
| - }, |
30 |
| - "outputs": [], |
31 | 33 | "source": [
|
32 |
| - "from sagemaker_core.main.shapes import TrainingJob\n", |
33 |
| - "\n", |
34 | 34 | "from sagemaker import Session, get_execution_role\n",
|
35 | 35 | "\n",
|
36 | 36 | "sagemaker_session = Session()\n",
|
37 | 37 | "role = get_execution_role()\n",
|
38 | 38 | "region = sagemaker_session.boto_region_name\n",
|
39 | 39 | "bucket = sagemaker_session.default_bucket()"
|
40 |
| - ] |
| 40 | + ], |
| 41 | + "id": "30656ece22011af6", |
| 42 | + "outputs": [], |
| 43 | + "execution_count": null |
41 | 44 | },
|
42 | 45 | {
|
43 |
| - "cell_type": "code", |
44 |
| - "execution_count": null, |
45 |
| - "id": "4b3a4f7d1713685f", |
46 | 46 | "metadata": {},
|
| 47 | + "cell_type": "code", |
| 48 | + "source": [ |
| 49 | + "from sklearn.datasets import load_iris\n", |
| 50 | + "from sklearn.model_selection import train_test_split\n", |
| 51 | + "\n", |
| 52 | + "import pandas as pd\n", |
| 53 | + "\n", |
| 54 | + "# Prepare Data\n", |
| 55 | + "\n", |
| 56 | + "iris = load_iris()\n", |
| 57 | + "iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)\n", |
| 58 | + "iris_df['target'] = iris.target\n", |
| 59 | + "\n", |
| 60 | + "os.makedirs('./data', exist_ok=True)\n", |
| 61 | + "\n", |
| 62 | + "iris_df = iris_df[['target'] + [col for col in iris_df.columns if col != 'target']]\n", |
| 63 | + "\n", |
| 64 | + "train_data, test_data = train_test_split(iris_df, test_size=0.2, random_state=42)\n", |
| 65 | + "\n", |
| 66 | + "train_data.to_csv('./data/train.csv', index=False, header=False)\n", |
| 67 | + "test_data.to_csv('./data/test.csv', index=False, header=False)\n", |
| 68 | + "\n", |
| 69 | + "# Remove the target column from the testing data. We will use this to call invoke_endpoint later\n", |
| 70 | + "test_data_no_target = test_data.drop('target', axis=1)\n", |
| 71 | + "\n", |
| 72 | + "prefix = \"DEMO-scikit-iris\"\n", |
| 73 | + "TRAIN_DATA = \"train.csv\"\n", |
| 74 | + "TEST_DATA = \"test.csv\"\n", |
| 75 | + "DATA_DIRECTORY = \"data\"\n", |
| 76 | + "\n", |
| 77 | + "train_input = sagemaker_session.upload_data(\n", |
| 78 | + " DATA_DIRECTORY, bucket=bucket, key_prefix=\"{}/{}\".format(prefix, DATA_DIRECTORY)\n", |
| 79 | + ")\n", |
| 80 | + "\n", |
| 81 | + "\n", |
| 82 | + "s3_input_path = \"s3://{}/{}/data/{}\".format(bucket, prefix, TRAIN_DATA)\n", |
| 83 | + "s3_output_path = \"s3://{}/{}/output\".format(bucket, prefix)\n", |
| 84 | + "\n", |
| 85 | + "s3_test_path = \"s3://{}/{}/data/{}\".format(bucket, prefix, TEST_DATA)\n", |
| 86 | + "\n", |
| 87 | + "print(s3_input_path)\n", |
| 88 | + "print(s3_output_path)" |
| 89 | + ], |
| 90 | + "id": "d0ea8169b21eaa29", |
47 | 91 | "outputs": [],
|
| 92 | + "execution_count": null |
| 93 | + }, |
| 94 | + { |
| 95 | + "metadata": {}, |
| 96 | + "cell_type": "markdown", |
| 97 | + "source": [ |
| 98 | + "\n", |
| 99 | + "# Integration with ModelTrainer\n", |
| 100 | + "\n", |
| 101 | + "The handshake between ModelTrainer and ModelBuilder is made seamlessly as in this example. The created model trainer object is directly fed into the model attribute of ModelBuilder through resource chaining . Fetching of the model artifacts is done internally within the ModelBuilder. \n", |
| 102 | + "\n", |
| 103 | + "Note: \n", |
| 104 | + "- Other than the ModelTrainer, the ModelBuilder also supports chaining of attributes such as Estimator or sagemaker-core's TrainingJob into the model attribute. \n", |
| 105 | + "\n", |
| 106 | + "Other than this there is an upgrade designed for retrieving images for a particular framework. The enhanced `image_uris.retrieve()` method will fetch the latest version of an image automatically if the version is not provided.\n" |
| 107 | + ], |
| 108 | + "id": "1dc5055ba5ccb2bb" |
| 109 | + }, |
| 110 | + { |
| 111 | + "metadata": {}, |
| 112 | + "cell_type": "code", |
48 | 113 | "source": [
|
49 | 114 | "\n",
|
50 |
| - "from sagemaker.modules.configs import SourceCode\n", |
| 115 | + "from sagemaker import image_uris\n", |
| 116 | + "from sagemaker_core.main.shapes import Channel, DataSource, S3DataSource, OutputDataConfig, \\\n", |
| 117 | + " StoppingCondition\n", |
51 | 118 | "from sagemaker.modules.train.model_trainer import ModelTrainer\n",
|
52 | 119 | "\n",
|
53 |
| - "xgboost_image = \"433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest\"\n", |
| 120 | + "# xgboost_image=\"433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest\"\n", |
| 121 | + "xgboost_image = image_uris.retrieve(framework=\"xgboost\", region=\"us-west-2\", image_scope=\"training\")\n", |
| 122 | + "print(xgboost_image)\n", |
54 | 123 | "\n",
|
55 |
| - "source_code = SourceCode(\n", |
56 |
| - " command=\"echo 'Hello World' && env\",\n", |
57 |
| - ")\n", |
58 | 124 | "model_trainer = ModelTrainer(\n",
|
| 125 | + " base_job_name=f'{alias}-mb-handshake',\n", |
| 126 | + " hyperparameters={\n", |
| 127 | + " 'objective': 'multi:softmax',\n", |
| 128 | + " 'num_class': '3',\n", |
| 129 | + " 'num_round': '10',\n", |
| 130 | + " 'eval_metric': 'merror'\n", |
| 131 | + " },\n", |
59 | 132 | " training_image=xgboost_image,\n",
|
60 |
| - " source_code=source_code,\n", |
| 133 | + " training_input_mode='File',\n", |
| 134 | + " role=role,\n", |
| 135 | + " output_data_config=OutputDataConfig(\n", |
| 136 | + " s3_output_path=s3_output_path\n", |
| 137 | + " ),\n", |
| 138 | + " stopping_condition=StoppingCondition(\n", |
| 139 | + " max_runtime_in_seconds=600\n", |
| 140 | + " )\n", |
61 | 141 | ")\n",
|
62 | 142 | "\n",
|
63 |
| - "model_trainer.train()" |
64 |
| - ] |
| 143 | + "model_trainer.train(input_data_config=[\n", |
| 144 | + " Channel(\n", |
| 145 | + " channel_name='train',\n", |
| 146 | + " content_type='csv',\n", |
| 147 | + " compression_type='None',\n", |
| 148 | + " record_wrapper_type='None',\n", |
| 149 | + " data_source=DataSource(\n", |
| 150 | + " s3_data_source=S3DataSource(\n", |
| 151 | + " s3_data_type='S3Prefix',\n", |
| 152 | + " s3_uri=s3_input_path,\n", |
| 153 | + " s3_data_distribution_type='FullyReplicated'\n", |
| 154 | + " )\n", |
| 155 | + " )\n", |
| 156 | + " )\n", |
| 157 | + "], )" |
| 158 | + ], |
| 159 | + "id": "4b3a4f7d1713685f", |
| 160 | + "outputs": [], |
| 161 | + "execution_count": null |
65 | 162 | },
|
66 | 163 | {
|
67 |
| - "cell_type": "code", |
68 |
| - "execution_count": null, |
69 |
| - "id": "295a16ef277257a0", |
70 | 164 | "metadata": {},
|
71 |
| - "outputs": [], |
| 165 | + "cell_type": "markdown", |
| 166 | + "source": "", |
| 167 | + "id": "96be4afa22c64350" |
| 168 | + }, |
| 169 | + { |
| 170 | + "metadata": {}, |
| 171 | + "cell_type": "code", |
72 | 172 | "source": [
|
73 | 173 | "import numpy as np\n",
|
74 | 174 | "from sagemaker.serve.builder.schema_builder import SchemaBuilder\n",
|
|
96 | 196 | " predictions = np.argmax(prediction_probabilities, axis=1)\n",
|
97 | 197 | " return predictions\n",
|
98 | 198 | "\n",
|
| 199 | + "\n", |
99 | 200 | "model_builder = ModelBuilder(\n",
|
100 |
| - " model=model_trainer, # ModelTrainer object passed onto ModelBuilder directly \n", |
| 201 | + " model=model_trainer, # ModelTrainer object passed onto ModelBuilder directly \n", |
101 | 202 | " role_arn=role,\n",
|
102 | 203 | " image_uri=xgboost_image,\n",
|
103 | 204 | " inference_spec=XGBoostSpec(),\n",
|
104 | 205 | " schema_builder=schema_builder,\n",
|
105 | 206 | " instance_type=\"ml.c6i.xlarge\"\n",
|
106 | 207 | ")\n",
|
107 |
| - "model=model_builder.build()\n", |
108 |
| - "predictor=model_builder.deploy()\n", |
109 |
| - "\n", |
110 |
| - "predictor\n", |
111 |
| - "assert model.model_data == model_trainer._latest_training_job.model_artifacts.s3_model_artifacts\n", |
112 |
| - "\n", |
113 |
| - "print(model.model_data)" |
114 |
| - ] |
| 208 | + "model = model_builder.build()" |
| 209 | + ], |
| 210 | + "id": "295a16ef277257a0", |
| 211 | + "outputs": [], |
| 212 | + "execution_count": null |
| 213 | + }, |
| 214 | + { |
| 215 | + "metadata": {}, |
| 216 | + "cell_type": "markdown", |
| 217 | + "source": "Once the model has been built , it can be deployed directly through the model_builder.deploy() method. This abstracts out information that was previously used commonly in workflows for different deployment modes. The deploy() method takes in an optional parameter `inference_config`. This determines attributes for modes such as serverless, async, batch and multi-model/multi-container endpoints. If the `inference_config` is not provided, the default real-time deployment is carried out.", |
| 218 | + "id": "99b403edaf616ef0" |
| 219 | + }, |
| 220 | + { |
| 221 | + "metadata": {}, |
| 222 | + "cell_type": "markdown", |
| 223 | + "source": "## ModelBuilder - Real-Time Deployment", |
| 224 | + "id": "44416566576e26df" |
115 | 225 | },
|
116 | 226 | {
|
117 |
| - "cell_type": "code", |
118 |
| - "execution_count": null, |
119 |
| - "id": "935ea8486278d7b1", |
120 | 227 | "metadata": {},
|
| 228 | + "cell_type": "code", |
| 229 | + "source": [ |
| 230 | + "predictor = model_builder.deploy(endpoint_name=f\"{alias}-xgboost-deploy-realtime\")\n", |
| 231 | + "sklearn_input = np.array([1.0, 2.0, 3.0, 4.0])\n", |
| 232 | + "result = predictor.predict(sklearn_input)\n", |
| 233 | + "print(result)" |
| 234 | + ], |
| 235 | + "id": "ab43000f6bd6018b", |
121 | 236 | "outputs": [],
|
| 237 | + "execution_count": null |
| 238 | + }, |
| 239 | + { |
| 240 | + "metadata": {}, |
| 241 | + "cell_type": "markdown", |
| 242 | + "source": "## ModelBuilder - Serverless Deployment\n", |
| 243 | + "id": "fbd0e6f6e92d0aeb" |
| 244 | + }, |
| 245 | + { |
| 246 | + "metadata": {}, |
| 247 | + "cell_type": "code", |
122 | 248 | "source": [
|
123 |
| - "training_job: TrainingJob = model_trainer._latest_training_job\n", |
124 |
| - "\n", |
125 |
| - "model_builder = ModelBuilder(\n", |
126 |
| - " model=training_job, # Sagemaker core's TrainingJob object passed onto ModelBuilder directly \n", |
127 |
| - " role_arn=role,\n", |
128 |
| - " image_uri=xgboost_image,\n", |
129 |
| - " schema_builder=schema_builder,\n", |
130 |
| - " inference_spec=XGBoostSpec(),\n", |
131 |
| - " instance_type=\"ml.c6i.xlarge\"\n", |
132 |
| - ")\n", |
133 |
| - "model=model_builder.build()\n", |
| 249 | + "from sagemaker.serverless.serverless_inference_config import ServerlessInferenceConfig\n", |
134 | 250 | "\n",
|
135 |
| - "assert model.model_data == training_job.model_artifacts.s3_model_artifacts\n", |
| 251 | + "predictor = model_builder.deploy(endpoint_name=f\"{alias}-xgboost-deploy-serverless\",\n", |
| 252 | + " inference_config=ServerlessInferenceConfig(memory_size_in_mb=2048))\n", |
| 253 | + "sklearn_input = np.array([1.0, 2.0, 3.0, 4.0])\n", |
| 254 | + "result = predictor.predict(sklearn_input)\n", |
| 255 | + "print(result)" |
| 256 | + ], |
| 257 | + "id": "40d3c9973d2d8934", |
| 258 | + "outputs": [], |
| 259 | + "execution_count": null |
| 260 | + }, |
| 261 | + { |
| 262 | + "metadata": {}, |
| 263 | + "cell_type": "markdown", |
| 264 | + "source": "## ModelBuilder - Async Deployment\n", |
| 265 | + "id": "93818038782f105d" |
| 266 | + }, |
| 267 | + { |
| 268 | + "metadata": {}, |
| 269 | + "cell_type": "code", |
| 270 | + "source": [ |
| 271 | + "from sagemaker.async_inference.async_inference_config import AsyncInferenceConfig\n", |
| 272 | + "from sagemaker.s3_utils import s3_path_join\n", |
136 | 273 | "\n",
|
137 |
| - "print(model.model_data)" |
138 |
| - ] |
| 274 | + "predictor = model_builder.deploy(endpoint_name=f\"{alias}-xgboost-deploy-async\", inference_config=AsyncInferenceConfig(\n", |
| 275 | + " output_path=s3_path_join(\"s3://\", bucket, \"async_inference/output\")))\n", |
| 276 | + "sklearn_input = np.array([1.0, 2.0, 3.0, 4.0])\n", |
| 277 | + "result = predictor.predict(sklearn_input)\n", |
| 278 | + "print(result)" |
| 279 | + ], |
| 280 | + "id": "77e7104aaa9d6da2", |
| 281 | + "outputs": [], |
| 282 | + "execution_count": null |
139 | 283 | },
|
140 | 284 | {
|
| 285 | + "metadata": {}, |
| 286 | + "cell_type": "markdown", |
| 287 | + "source": "## ModelBuilder - Batch Deployment\n", |
| 288 | + "id": "2ff3e043b5f5f8d7" |
| 289 | + }, |
| 290 | + { |
| 291 | + "metadata": {}, |
141 | 292 | "cell_type": "code",
|
142 |
| - "execution_count": null, |
143 |
| - "id": "757180da84407a1a", |
| 293 | + "source": [ |
| 294 | + "from sagemaker.batch_inference.batch_transform_inference_config import BatchTransformInferenceConfig\n", |
| 295 | + "from sagemaker.s3_utils import s3_path_join\n", |
| 296 | + "\n", |
| 297 | + "transformer = model_builder.deploy(endpoint_name=f\"{alias}-xgboost-deploy-batch\",\n", |
| 298 | + " inference_config=BatchTransformInferenceConfig(\n", |
| 299 | + " instance_count=1,\n", |
| 300 | + " instance_type='ml.m5.large',\n", |
| 301 | + " output_path=s3_path_join(\"s3://\", bucket, \"batch_inference/output\"),\n", |
| 302 | + " test_data_s3_path = s3_test_path\n", |
| 303 | + " ))\n", |
| 304 | + "print(transformer)" |
| 305 | + ], |
| 306 | + "id": "3ef3febc0f840133", |
| 307 | + "outputs": [], |
| 308 | + "execution_count": null |
| 309 | + }, |
| 310 | + { |
| 311 | + "metadata": {}, |
| 312 | + "cell_type": "markdown", |
| 313 | + "source": "## ModelBuilder - Multi-Model Endpoint Deployment\n", |
| 314 | + "id": "66e103b7292694eb" |
| 315 | + }, |
| 316 | + { |
| 317 | + "metadata": {}, |
| 318 | + "cell_type": "markdown", |
| 319 | + "source": "", |
| 320 | + "id": "a1c4d43bbd23efec" |
| 321 | + }, |
| 322 | + { |
144 | 323 | "metadata": {},
|
| 324 | + "cell_type": "code", |
| 325 | + "source": [ |
| 326 | + "from sagemaker.compute_resource_requirements.resource_requirements import ResourceRequirements\n", |
| 327 | + "\n", |
| 328 | + "predictor = model_builder.deploy(endpoint_name=f\"{alias}-xgboost-deploy-multi-model\",\n", |
| 329 | + " inference_config=ResourceRequirements(\n", |
| 330 | + " requests={\n", |
| 331 | + " \"num_cpus\": 0.5,\n", |
| 332 | + " \"memory\": 512,\n", |
| 333 | + " \"copies\": 2,\n", |
| 334 | + " },\n", |
| 335 | + " limits={},\n", |
| 336 | + " ))\n", |
| 337 | + "sklearn_input = np.array([1.0, 2.0, 3.0, 4.0])\n", |
| 338 | + "result = predictor.predict(sklearn_input)\n", |
| 339 | + "print(result)" |
| 340 | + ], |
| 341 | + "id": "f3c622148377c964", |
145 | 342 | "outputs": [],
|
146 |
| - "source": [] |
| 343 | + "execution_count": null |
147 | 344 | }
|
148 | 345 | ],
|
149 | 346 | "metadata": {
|
|
0 commit comments