|
9 | 9 |
|
10 | 10 | #include "util.h"
|
11 | 11 | #include "field.h"
|
| 12 | +#include "modinv32_impl.h" |
12 | 13 |
|
13 | 14 | #ifdef VERIFY
|
14 | 15 | static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
@@ -1164,131 +1165,92 @@ static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const se
|
1164 | 1165 | #endif
|
1165 | 1166 | }
|
1166 | 1167 |
|
1167 |
| -static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) { |
1168 |
| - secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; |
1169 |
| - int j; |
| 1168 | +static void secp256k1_fe_from_signed30(secp256k1_fe *r, const secp256k1_modinv32_signed30 *a) { |
| 1169 | + const uint32_t M26 = UINT32_MAX >> 6; |
| 1170 | + const uint32_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4], |
| 1171 | + a5 = a->v[5], a6 = a->v[6], a7 = a->v[7], a8 = a->v[8]; |
1170 | 1172 |
|
1171 |
| - /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in |
1172 |
| - * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: |
1173 |
| - * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] |
| 1173 | + /* The output from secp256k1_modinv32{_var} should be normalized to range [0,modulus), and |
| 1174 | + * have limbs in [0,2^30). The modulus is < 2^256, so the top limb must be below 2^(256-30*8). |
1174 | 1175 | */
|
| 1176 | + VERIFY_CHECK(a0 >> 30 == 0); |
| 1177 | + VERIFY_CHECK(a1 >> 30 == 0); |
| 1178 | + VERIFY_CHECK(a2 >> 30 == 0); |
| 1179 | + VERIFY_CHECK(a3 >> 30 == 0); |
| 1180 | + VERIFY_CHECK(a4 >> 30 == 0); |
| 1181 | + VERIFY_CHECK(a5 >> 30 == 0); |
| 1182 | + VERIFY_CHECK(a6 >> 30 == 0); |
| 1183 | + VERIFY_CHECK(a7 >> 30 == 0); |
| 1184 | + VERIFY_CHECK(a8 >> 16 == 0); |
| 1185 | + |
| 1186 | + r->n[0] = a0 & M26; |
| 1187 | + r->n[1] = (a0 >> 26 | a1 << 4) & M26; |
| 1188 | + r->n[2] = (a1 >> 22 | a2 << 8) & M26; |
| 1189 | + r->n[3] = (a2 >> 18 | a3 << 12) & M26; |
| 1190 | + r->n[4] = (a3 >> 14 | a4 << 16) & M26; |
| 1191 | + r->n[5] = (a4 >> 10 | a5 << 20) & M26; |
| 1192 | + r->n[6] = (a5 >> 6 | a6 << 24) & M26; |
| 1193 | + r->n[7] = (a6 >> 2 ) & M26; |
| 1194 | + r->n[8] = (a6 >> 28 | a7 << 2) & M26; |
| 1195 | + r->n[9] = (a7 >> 24 | a8 << 6); |
1175 | 1196 |
|
1176 |
| - secp256k1_fe_sqr(&x2, a); |
1177 |
| - secp256k1_fe_mul(&x2, &x2, a); |
1178 |
| - |
1179 |
| - secp256k1_fe_sqr(&x3, &x2); |
1180 |
| - secp256k1_fe_mul(&x3, &x3, a); |
1181 |
| - |
1182 |
| - x6 = x3; |
1183 |
| - for (j=0; j<3; j++) { |
1184 |
| - secp256k1_fe_sqr(&x6, &x6); |
1185 |
| - } |
1186 |
| - secp256k1_fe_mul(&x6, &x6, &x3); |
1187 |
| - |
1188 |
| - x9 = x6; |
1189 |
| - for (j=0; j<3; j++) { |
1190 |
| - secp256k1_fe_sqr(&x9, &x9); |
1191 |
| - } |
1192 |
| - secp256k1_fe_mul(&x9, &x9, &x3); |
| 1197 | +#ifdef VERIFY |
| 1198 | + r->magnitude = 1; |
| 1199 | + r->normalized = 1; |
| 1200 | + secp256k1_fe_verify(r); |
| 1201 | +#endif |
| 1202 | +} |
1193 | 1203 |
|
1194 |
| - x11 = x9; |
1195 |
| - for (j=0; j<2; j++) { |
1196 |
| - secp256k1_fe_sqr(&x11, &x11); |
1197 |
| - } |
1198 |
| - secp256k1_fe_mul(&x11, &x11, &x2); |
| 1204 | +static void secp256k1_fe_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_fe *a) { |
| 1205 | + const uint32_t M30 = UINT32_MAX >> 2; |
| 1206 | + const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4], |
| 1207 | + a5 = a->n[5], a6 = a->n[6], a7 = a->n[7], a8 = a->n[8], a9 = a->n[9]; |
1199 | 1208 |
|
1200 |
| - x22 = x11; |
1201 |
| - for (j=0; j<11; j++) { |
1202 |
| - secp256k1_fe_sqr(&x22, &x22); |
1203 |
| - } |
1204 |
| - secp256k1_fe_mul(&x22, &x22, &x11); |
| 1209 | +#ifdef VERIFY |
| 1210 | + VERIFY_CHECK(a->normalized); |
| 1211 | +#endif |
1205 | 1212 |
|
1206 |
| - x44 = x22; |
1207 |
| - for (j=0; j<22; j++) { |
1208 |
| - secp256k1_fe_sqr(&x44, &x44); |
1209 |
| - } |
1210 |
| - secp256k1_fe_mul(&x44, &x44, &x22); |
| 1213 | + r->v[0] = (a0 | a1 << 26) & M30; |
| 1214 | + r->v[1] = (a1 >> 4 | a2 << 22) & M30; |
| 1215 | + r->v[2] = (a2 >> 8 | a3 << 18) & M30; |
| 1216 | + r->v[3] = (a3 >> 12 | a4 << 14) & M30; |
| 1217 | + r->v[4] = (a4 >> 16 | a5 << 10) & M30; |
| 1218 | + r->v[5] = (a5 >> 20 | a6 << 6) & M30; |
| 1219 | + r->v[6] = (a6 >> 24 | a7 << 2 |
| 1220 | + | a8 << 28) & M30; |
| 1221 | + r->v[7] = (a8 >> 2 | a9 << 24) & M30; |
| 1222 | + r->v[8] = a9 >> 6; |
| 1223 | +} |
1211 | 1224 |
|
1212 |
| - x88 = x44; |
1213 |
| - for (j=0; j<44; j++) { |
1214 |
| - secp256k1_fe_sqr(&x88, &x88); |
1215 |
| - } |
1216 |
| - secp256k1_fe_mul(&x88, &x88, &x44); |
| 1225 | +static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_fe = { |
| 1226 | + {{-0x3D1, -4, 0, 0, 0, 0, 0, 0, 65536}}, |
| 1227 | + 0x2DDACACFL |
| 1228 | +}; |
1217 | 1229 |
|
1218 |
| - x176 = x88; |
1219 |
| - for (j=0; j<88; j++) { |
1220 |
| - secp256k1_fe_sqr(&x176, &x176); |
1221 |
| - } |
1222 |
| - secp256k1_fe_mul(&x176, &x176, &x88); |
| 1230 | +static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) { |
| 1231 | + secp256k1_fe tmp; |
| 1232 | + secp256k1_modinv32_signed30 s; |
1223 | 1233 |
|
1224 |
| - x220 = x176; |
1225 |
| - for (j=0; j<44; j++) { |
1226 |
| - secp256k1_fe_sqr(&x220, &x220); |
1227 |
| - } |
1228 |
| - secp256k1_fe_mul(&x220, &x220, &x44); |
| 1234 | + tmp = *x; |
| 1235 | + secp256k1_fe_normalize(&tmp); |
| 1236 | + secp256k1_fe_to_signed30(&s, &tmp); |
| 1237 | + secp256k1_modinv32(&s, &secp256k1_const_modinfo_fe); |
| 1238 | + secp256k1_fe_from_signed30(r, &s); |
1229 | 1239 |
|
1230 |
| - x223 = x220; |
1231 |
| - for (j=0; j<3; j++) { |
1232 |
| - secp256k1_fe_sqr(&x223, &x223); |
1233 |
| - } |
1234 |
| - secp256k1_fe_mul(&x223, &x223, &x3); |
| 1240 | + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); |
| 1241 | +} |
1235 | 1242 |
|
1236 |
| - /* The final result is then assembled using a sliding window over the blocks. */ |
| 1243 | +static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) { |
| 1244 | + secp256k1_fe tmp; |
| 1245 | + secp256k1_modinv32_signed30 s; |
1237 | 1246 |
|
1238 |
| - t1 = x223; |
1239 |
| - for (j=0; j<23; j++) { |
1240 |
| - secp256k1_fe_sqr(&t1, &t1); |
1241 |
| - } |
1242 |
| - secp256k1_fe_mul(&t1, &t1, &x22); |
1243 |
| - for (j=0; j<5; j++) { |
1244 |
| - secp256k1_fe_sqr(&t1, &t1); |
1245 |
| - } |
1246 |
| - secp256k1_fe_mul(&t1, &t1, a); |
1247 |
| - for (j=0; j<3; j++) { |
1248 |
| - secp256k1_fe_sqr(&t1, &t1); |
1249 |
| - } |
1250 |
| - secp256k1_fe_mul(&t1, &t1, &x2); |
1251 |
| - for (j=0; j<2; j++) { |
1252 |
| - secp256k1_fe_sqr(&t1, &t1); |
1253 |
| - } |
1254 |
| - secp256k1_fe_mul(r, a, &t1); |
1255 |
| -} |
| 1247 | + tmp = *x; |
| 1248 | + secp256k1_fe_normalize_var(&tmp); |
| 1249 | + secp256k1_fe_to_signed30(&s, &tmp); |
| 1250 | + secp256k1_modinv32_var(&s, &secp256k1_const_modinfo_fe); |
| 1251 | + secp256k1_fe_from_signed30(r, &s); |
1256 | 1252 |
|
1257 |
| -static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) { |
1258 |
| -#if defined(USE_FIELD_INV_BUILTIN) |
1259 |
| - secp256k1_fe_inv(r, a); |
1260 |
| -#elif defined(USE_FIELD_INV_NUM) |
1261 |
| - secp256k1_num n, m; |
1262 |
| - static const secp256k1_fe negone = SECP256K1_FE_CONST( |
1263 |
| - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, |
1264 |
| - 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL |
1265 |
| - ); |
1266 |
| - /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ |
1267 |
| - static const unsigned char prime[32] = { |
1268 |
| - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
1269 |
| - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
1270 |
| - 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
1271 |
| - 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F |
1272 |
| - }; |
1273 |
| - unsigned char b[32]; |
1274 |
| - int res; |
1275 |
| - secp256k1_fe c = *a; |
1276 |
| - secp256k1_fe_normalize_var(&c); |
1277 |
| - secp256k1_fe_get_b32(b, &c); |
1278 |
| - secp256k1_num_set_bin(&n, b, 32); |
1279 |
| - secp256k1_num_set_bin(&m, prime, 32); |
1280 |
| - secp256k1_num_mod_inverse(&n, &n, &m); |
1281 |
| - secp256k1_num_get_bin(b, 32, &n); |
1282 |
| - res = secp256k1_fe_set_b32(r, b); |
1283 |
| - (void)res; |
1284 |
| - VERIFY_CHECK(res); |
1285 |
| - /* Verify the result is the (unique) valid inverse using non-GMP code. */ |
1286 |
| - secp256k1_fe_mul(&c, &c, r); |
1287 |
| - secp256k1_fe_add(&c, &negone); |
1288 |
| - CHECK(secp256k1_fe_normalizes_to_zero_var(&c)); |
1289 |
| -#else |
1290 |
| -#error "Please select field inverse implementation" |
1291 |
| -#endif |
| 1253 | + VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp)); |
1292 | 1254 | }
|
1293 | 1255 |
|
1294 | 1256 | #endif /* SECP256K1_FIELD_REPR_IMPL_H */
|
0 commit comments