-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_coco_energy.py
267 lines (191 loc) · 10.9 KB
/
calculate_coco_energy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import sys
import numpy as np
import time
import pickle as pkl
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from PIL import Image
import cv2
SEEDS = [12031212,1234,5845389,23423,343495,2024,3842834,23402304,482347247,1029237127]
SEED=SEEDS[1]
np.random.seed(SEED)
torch.manual_seed(SEED)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# DEVICE = torch.device("cuda",int(sys.argv[1]))
from captum.attr import IntegratedGradients, Saliency, DeepLift, DeepLiftShap, GradientShap
from captum.attr import GuidedBackprop, Deconvolution, LRP, InputXGradient, Lime
from zennit.composites import EpsilonAlpha2Beta1
split = sys.argv[1]
model_ind = int(sys.argv[2])
print(f'SPLIT: {split}; MODEL IND: {model_ind}')
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Conv2d(in_channels=3,out_channels=64,kernel_size=5, padding='same')
self.conv2=nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3, padding='same')
self.conv3=nn.Conv2d(in_channels=128,out_channels=256,kernel_size=5, padding='same')
self.maxPooling2=nn.MaxPool2d(kernel_size=2)
self.maxPooling4_0=nn.MaxPool2d(kernel_size=4)
self.maxPooling4_1=nn.MaxPool2d(kernel_size=4)
# self.adPooling=nn.AdaptiveAvgPool1d(256)
self.fc1=nn.Linear(in_features=12544,out_features=128)
self.fc2=nn.Linear(in_features=128,out_features=64)
self.out=nn.Linear(in_features=64,out_features=2)
def forward(self,x):
x=self.conv1(x)
x=self.maxPooling4_0(x)
x=F.relu(x)
x=self.conv2(x)
x=self.maxPooling4_1(x)
x=F.relu(x)
x=self.conv3(x)
x=self.maxPooling2(x)
x=F.relu(x)
x=F.dropout(x)
x=x.view(1,x.size()[0],-1) #stretch to 1d data
#x=self.adPooling(x).squeeze()
x=self.fc1(x)
x=F.relu(x)
x=self.fc2(x)
x=F.relu(x)
x=self.out(x)
return x[0]
def rescale_values(image,max_val,min_val):
'''
image - numpy array
max_val/min_val - float
'''
return (image-image.min())/(image.max()-image.min())*(max_val-min_val)+min_val
# proportion of channel attribution sum over total image attribution
# def channel_sum(attr, channel):
# return np.sum(np.abs(attr[channel]))/np.sum(np.abs(attr))
def channel_ratio(attr, channel):
return np.mean(np.abs(attr[:,:,channel]))/np.mean(np.abs(attr))
def lrp(data,model,target):
# create a composite instance
#composite = EpsilonPlusFlat()
composite = EpsilonAlpha2Beta1()
# use the following instead to ignore bias for the relevance
# composite = EpsilonPlusFlat(zero_params='bias')
# make sure the input requires a gradient
data.requires_grad = True
# compute the output and gradient within the composite's context
with composite.context(model) as modified_model:
modified_model=modified_model.to(DEVICE)
output = modified_model(data.to(DEVICE)).to(DEVICE)
grad = torch.eye(2).to(DEVICE)[[target]].to(DEVICE)
# gradient/ relevance wrt. class/output 0
output.backward(gradient=grad.reshape((1,2)))
# relevance is not accumulated in .grad if using torch.autograd.grad
# relevance, = torch.autograd.grad(output, input, torch.eye(10)[[0])
# gradient is accumulated in input.grad
att=data.grad.detach().cpu().squeeze().numpy()
# rgb_weights = [0.2989, 0.5870, 0.1140]
# grayscale_att_lrp = np.dot(att[...,:3], rgb_weights)
return att
def load_trained(path):
model = Net()
model.load_state_dict(torch.load(path,map_location=DEVICE))
return model
# # Confounder model tested on conf/sup/no data
# energy_red_conf_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_conf_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_conf_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_conf_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_conf_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_conf_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_conf_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_conf_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_conf_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# # Suppressor model tested on conf/sup/no data
# energy_red_sup_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_sup_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_sup_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_sup_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_sup_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_sup_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_sup_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_sup_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_sup_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# # No Colour model tested on conf/sup/no data
# energy_red_no_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_no_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_no_conf={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_no_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_no_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_no_sup={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_red_no_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_green_no_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energy_blue_no_no={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []}
# energies = {
# 'conf': { # conf model on conf/sup/no data
# 'conf': [energy_red_conf_conf, energy_green_conf_conf, energy_blue_conf_conf],
# 'sup': [energy_red_conf_sup, energy_green_conf_sup, energy_blue_conf_sup],
# 'norm': [energy_red_conf_no, energy_green_conf_no, energy_blue_conf_no]},
# 'sup': { # sup model on conf/sup/no data
# 'conf': [energy_red_sup_conf, energy_green_sup_conf, energy_blue_sup_conf],
# 'sup': [energy_red_sup_sup, energy_green_sup_sup, energy_blue_sup_sup],
# 'norm': [energy_red_sup_no, energy_green_sup_no, energy_blue_sup_no]},
# 'norm': { # no_col model on conf/sup/no data
# 'conf': [energy_red_no_conf, energy_green_no_conf, energy_blue_no_conf],
# 'sup': [energy_red_no_sup, energy_green_no_sup, energy_blue_no_sup],
# 'norm': [energy_red_no_no, energy_green_no_no, energy_blue_no_no]}
# }
energies = {}
for model in ['norm', 'conf', 'sup']:
energies[model] = {}
for dataset in ['norm', 'dark', 'light']:
energies[model][dataset] = []
for i in range(3):
energies[model][dataset].append({'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': []})
batch_size = 64
with open(f'./artifacts/split_{split}_coco_data_norm_test.pkl', 'rb') as f:
[x_test_norm, y_test_norm, masks_test_norm, _, _] = pkl.load(f)
norm_loader = DataLoader(TensorDataset(torch.tensor(x_test_norm.transpose(0,3,1,2)), torch.tensor(y_test_norm)), batch_size=batch_size, shuffle=False, num_workers=4)
with open(f'./artifacts/split_{split}_coco_data_dark_test.pkl', 'rb') as f:
[x_test_dark, y_test_dark, masks_test_dark, _, _] = pkl.load(f)
dark_loader = DataLoader(TensorDataset(torch.tensor(x_test_dark.transpose(0,3,1,2)), torch.tensor(y_test_dark)), batch_size=batch_size, shuffle=False, num_workers=4)
with open(f'./artifacts/split_{split}_coco_data_light_test.pkl', 'rb') as f:
[x_test_light, y_test_light, masks_test_light, _, _] = pkl.load(f)
light_loader = DataLoader(TensorDataset(torch.tensor(x_test_light.transpose(0,3,1,2)), torch.tensor(y_test_light)), batch_size=batch_size, shuffle=False, num_workers=4)
folder=os.getcwd()+'/images'
print(folder)
t0=time.time()
datasets = ['norm', 'dark', 'light']
atts = []
xs = []
# print(conf_loader[0][0].shape)
energies_x = []
for model_name, model_energies in energies.items():
model = load_trained(f'./models/coco_{model_name}_{split}_{model_ind}.pt').eval().to(DEVICE)
for i, test_loader in enumerate([norm_loader, dark_loader, light_loader]):
atts_loader = []
xs_loader = []
print('calculating attributions for model', model_name, 'with test dataset', datasets[i])
x_energies = [[], [], []]
for x_batch, test_labels in test_loader:
for j in range(x_batch.shape[0]):
data = x_batch[j].reshape(1,3,224,224).to(torch.float32).to(DEVICE)
target = torch.tensor(test_labels[j]).to(torch.int16).to(DEVICE)
ig_att = IntegratedGradients(model).attribute(data, target=target).cpu().detach().numpy().squeeze()
gradshap_att = GradientShap(model).attribute(data,target=target, baselines=torch.zeros(data.shape).to(DEVICE)).cpu().detach().numpy().squeeze()
deconv_att = Deconvolution(model).attribute(data,target=target).cpu().detach().numpy().squeeze()
lrp_att=LRP(model).attribute(data,target=target).cpu().detach().numpy().squeeze()
lrp_ab = lrp(data,model,target)
for channel_ind in range(3):
# only need to calculate x (data) energies once, as it is model independent
if model_name == 'conf':
x_energies[channel_ind].append(channel_ratio(x_batch[j].detach().numpy(), channel_ind))
model_energies[datasets[i]][channel_ind]['deconv'].append(channel_ratio(np.transpose(deconv_att, (1,2,0)), channel_ind))
model_energies[datasets[i]][channel_ind]['int_grads'].append(channel_ratio(np.transpose(ig_att, (1,2,0)), channel_ind))
model_energies[datasets[i]][channel_ind]['shap'].append(channel_ratio(np.transpose(gradshap_att, (1,2,0)), channel_ind))
model_energies[datasets[i]][channel_ind]['lrp'].append(channel_ratio(np.transpose(lrp_att, (1,2,0)), channel_ind))
model_energies[datasets[i]][channel_ind]['lrp_ab'].append(channel_ratio(np.transpose(lrp_ab, (1,2,0)), channel_ind))
energies_x.append(x_energies)
with open(f'./energies/energies_coco_{split}_{model_ind}.pickle', 'wb') as f:
pkl.dump(energies, f)
with open(f'./energies/energies_coco_x_{split}.pickle', 'wb') as f:
pkl.dump(energies_x, f)