-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_watermarks_explanations_pca.py
327 lines (246 loc) · 12.7 KB
/
calculate_watermarks_explanations_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import sys
import numpy as np
import time
import pickle
from torch import manual_seed
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from PIL import Image
from scipy.ndimage import sobel, laplace
SEEDS = [12031212,1234,5845389,23423,343495,2024,3842834,23402304,482347247,1029237127]
SEED=SEEDS[int(sys.argv[1])]
manual_seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
os.environ['PYTHONHASHSEED']=str(SEED)
random.seed(SEED)
# if sys.argv[2] is not None:
# DEVICE = torch.device("cuda",int(sys.argv[2]))
# else:
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#DEVICE = 'cpu'
print('testing testing 123')
print(DEVICE)
# DEVICE = 'cpu'
from captum.attr import IntegratedGradients, GradientShap, Deconvolution, LRP, Lime
from zennit.composites import EpsilonAlpha2Beta1
split = sys.argv[1]
model_name = sys.argv[2]
model_wm_placement = sys.argv[2] # fixed/variable; Whether the model is trained on fixed or variable watermark; gets tested on both fixed and variable test sets in this script
print(f'SPLIT: {split} TRAINED ON {model_name} data with {model_wm_placement} WM POSITION')
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Conv2d(in_channels=3,out_channels=64,kernel_size=5)
self.conv2=nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3)
self.conv3=nn.Conv2d(in_channels=128,out_channels=256,kernel_size=5)
self.maxPooling2=nn.MaxPool2d(kernel_size=2)
self.maxPooling4_0=nn.MaxPool2d(kernel_size=4)
self.maxPooling4_1=nn.MaxPool2d(kernel_size=4)
# self.adPooling=nn.AdaptiveAvgPool1d(256)
self.fc1=nn.Linear(in_features=256,out_features=128)
self.fc2=nn.Linear(in_features=128,out_features=64)
self.out=nn.Linear(in_features=64,out_features=2)
def forward(self,x):
x=self.conv1(x)
x=self.maxPooling4_0(x)
x=F.relu(x)
x=self.conv2(x)
x=self.maxPooling4_1(x)
x=F.relu(x)
x=self.conv3(x)
x=self.maxPooling2(x)
x=F.relu(x)
x=F.dropout(x)
x=x.view(1,x.size()[0],-1) #stretch to 1d data
#x=self.adPooling(x).squeeze()
x=self.fc1(x)
x=F.relu(x)
x=self.fc2(x)
x=F.relu(x)
x=self.out(x)
return x[0]
def rescale_values(image,max_val,min_val):
'''
image - numpy array
max_val/min_val - float
'''
return (image-image.min())/(image.max()-image.min())*(max_val-min_val)+min_val
def lrp(data,model,target,device):
# create a composite instance
#composite = EpsilonPlusFlat()
composite = EpsilonAlpha2Beta1()
# use the following instead to ignore bias for the relevance
# composite = EpsilonPlusFlat(zero_params='bias')
# make sure the input requires a gradient
data.requires_grad = True
# compute the output and gradient within the composite's context
with composite.context(model) as modified_model:
modified_model=modified_model.to(device)
output = modified_model(data.to(device)).to(device)
grad = torch.eye(2, device=device)[[target]].to(device)
# gradient/ relevance wrt. class/output 0
output.backward(gradient=grad)
# relevance is not accumulated in .grad if using torch.autograd.grad
# relevance, = torch.autograd.grad(output, input, torch.eye(10)[[0])
# gradient is accumulated in input.grad
att=abs(data.grad.detach().cpu().squeeze().numpy().transpose(1,2,0))
rgb_weights = [0.2989, 0.5870, 0.1140]
grayscale_att_lrp = np.dot(att[...,:3], rgb_weights)
return grayscale_att_lrp
def plot_atts(data,model,target):
# data is a tensor of shape torch.Size([1, 3, 128, 128])
# model is
# target is an integer
torch.manual_seed(SEED)
out=model(data)
Y_probs = F.softmax(out[0], dim=-1)
target = int(target)
ig_att = np.transpose(IntegratedGradients(model).attribute(data, target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# sal_att = np.transpose(Saliency(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
gradshap_att = np.transpose(GradientShap(model).attribute(data,target=target, baselines=torch.zeros(data.shape).to(DEVICE)).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# backprop_att = np.transpose(GuidedBackprop(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
# ix_att = np.transpose(InputXGradient(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
deconv_att = np.transpose(Deconvolution(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lrp_att=np.transpose(LRP(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lime_att=np.transpose(Lime(model).attribute(data,target=target).squeeze().cpu().detach().numpy(), (1, 2, 0)).squeeze()
lrp_ab = lrp(data,model,target, DEVICE)
rgb_weights = [0.2989, 0.5870, 0.1140]
grayscale_att_deconv = np.dot(deconv_att[...,:3], rgb_weights)
# grayscale_att_ix = np.dot(ix_att[...,:3], rgb_weights)
# grayscale_att_backprp = np.dot(backprop_att[...,:3], rgb_weights)
grayscale_att_shap = np.dot(gradshap_att[...,:3], rgb_weights)
# grayscale_att_sal = np.dot(sal_att[...,:3], rgb_weights)
grayscale_att_ig = np.dot(ig_att[...,:3], rgb_weights)
grayscale_att_lrp = np.dot(lrp_att[...,:3], rgb_weights)
grayscale_att_lime = np.dot(lime_att[...,:3], rgb_weights)
atts={
'deconv':abs(grayscale_att_deconv),
# 'saliency':abs(grayscale_att_sal),
'int_grads':abs(grayscale_att_ig),
'shap':abs(grayscale_att_shap),
# 'backprop':abs(grayscale_att_backprp),
# 'ix':abs(grayscale_att_ix),
'lrp':abs(grayscale_att_lrp),
'lrp_ab':abs(lrp_ab),
'lime': abs(grayscale_att_lime)
}
return atts,Y_probs
def load_trained(path):
model = Net()
model.load_state_dict(torch.load(path, map_location=DEVICE))
return model
#
explanations_water={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []} # explanations for
explanations_no_water={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': [],}
explanations_water_variable={'deconv':[],'int_grads':[],'shap':[],'lrp':[], 'lrp_ab': []}
explanations_no_water_variable={'deconv':[], 'int_grads':[], 'shap':[], 'lrp':[], 'lrp_ab': [],}
variable_str_model = ''
if model_wm_placement == 'variable':
variable_str_model = '_variable'
folder=os.getcwd()+'/images'
print(folder)
t0=time.time()
rgb_weights = [0.2989, 0.5870, 0.1140]
for placement in ['fixed', 'variable']: # Each model trained on {conf, sup, no} with {fixed, variable} wm position gets tested on {fixed, variable} wm position data
variable_str = ''
if placement == 'variable':
variable_str = '_variable'
no_wm_path = f'./artifacts/split_{split}_no_watermark{variable_str}_test.pkl'
wm_path = f'./artifacts/split_{split}_all_watermark{variable_str}_test.pkl'
try:
with open(no_wm_path, 'rb') as f:
no_watermark_dataset, labels_test_no, _, _ = pickle.load(f)
no_watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test_no.flatten()[i]] for i,x in enumerate(no_watermark_dataset)]
with open(wm_path, 'rb') as f:
watermark_dataset, labels_test, _, _ = pickle.load(f)
watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test.flatten()[i]] for i,x in enumerate(watermark_dataset)]
except:
with open(no_wm_path, 'rb') as f:
no_watermark_dataset, labels_test_no, _ = pickle.load(f)
no_watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test_no.flatten()[i]] for i,x in enumerate(no_watermark_dataset)]
with open(wm_path, 'rb') as f:
watermark_dataset, labels_test, _ = pickle.load(f)
watermark_dataset = [[rescale_values(x,1,0).transpose(2,0,1),labels_test.flatten()[i]] for i,x in enumerate(watermark_dataset)]
for model_ind in range(1):
model=load_trained(f'./models/cnn_{model_name}{variable_str_model}_{split}_{model_ind}.pt').eval().to(DEVICE)
for i in range(len(watermark_dataset)):
w_image = watermark_dataset[i]
w_target=w_image[1]
w_image=w_image[0]
w_example=torch.tensor(w_image).unsqueeze(0).to(DEVICE,dtype=torch.float)
w_target = torch.max(model(w_example), 1)[1].to(int)
nw_image = no_watermark_dataset[i]
nw_target=nw_image[1]
nw_image=nw_image[0]
nw_example=torch.tensor(nw_image).unsqueeze(0).to(DEVICE,dtype=torch.float)
nw_target = torch.max(model(nw_example), 1)[1].to(int)
# explanations for predicted class (n)w_target_{MODEL}
explanations_w, _ = plot_atts(w_example,model,w_target)
explanations_nw, _ = plot_atts(nw_example,model,nw_target)
for method in list(explanations_water.keys()):
if placement == 'fixed':
explanations_water[method].append(explanations_w[method])
explanations_no_water[method].append(explanations_nw[method])
else:
explanations_water_variable[method].append(explanations_w[method])
explanations_no_water_variable[method].append(explanations_nw[method])
import logging
import matplotlib.pyplot as plt
from sklearn import cluster, decomposition
from sklearn.preprocessing import MinMaxScaler
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
def plot_gallery(title, images, image_shape=(128,128), n_col=2, n_row=5, out_file='', cmap=plt.cm.gray):
fig, axs = plt.subplots(
nrows=n_row,
ncols=n_col,
figsize=(2.0 * n_col, 2.3 * n_row),
facecolor="white",
constrained_layout=True,
)
fig.set_constrained_layout_pads(w_pad=0.01, h_pad=0.02, hspace=0, wspace=0)
fig.set_edgecolor("black")
fig.suptitle(title, size=16)
for ax, vec in zip(axs.flat, images):
vmax = max(vec.max(), -vec.min())
im = ax.imshow(
vec.reshape(image_shape),
# vec.reshape(image_shape).astype(np.int64),
cmap=cmap,
interpolation="nearest",
vmin=-vmax,
vmax=vmax,
)
ax.axis("off")
fig.colorbar(im, ax=axs, orientation="horizontal", shrink=0.99, aspect=40, pad=0.01)
plt.savefig(out_file)
water_strings = ['watermark', 'no watermark', 'watermark', 'no watermark']
position_strings = ['fixed', 'fixed', 'variable', 'variable']
rows, columns = 2, 5
n_plot = 10
for i, explanations in enumerate([explanations_water, explanations_no_water, explanations_water_variable, explanations_no_water_variable]):
for method in list(explanations.keys()):
print(f'{method} explanations PCA for {model_name} {model_wm_placement} model split {split} tested over {position_strings[i]} {water_strings[i]}')
explanations_flattened = np.asarray(explanations[method]).reshape((np.asarray(explanations[method]).shape[0], -1))
n_samples, n_features = explanations_flattened.shape
print(n_samples, n_features)
# Global centering (focus on one feature, centering all samples)
explanations_centered = explanations_flattened - explanations_flattened.mean(axis=0)
# Local centering (focus on one sample, centering all features)
explanations_centered -= explanations_centered.mean(axis=1).reshape(n_samples, -1)
# 0 < n_components < 1 => n_components% variance explained, aka 0.98 => 98% of variance must be explained by the number of components subsequently chosen
pca_estimator = decomposition.PCA(
n_components=0.98, svd_solver="full"
)
pca_estimator.fit(explanations_centered)
components = pca_estimator.components_
print(components.shape)
print(f'Number of PCA components: {pca_estimator.components_}')
# eigenvectors = components.reshape((components.shape[0],128,128))
plot_gallery(
f"top {n_plot} PCA components for {method} explanations of {model_name} {model_wm_placement} model split {split} tested over {position_strings[i]} {water_strings[i]}", components[:n_plot], n_col=columns, n_row=rows, out_file=f'./figures/principal_components_{method}_{model_name}_{model_wm_placement}_{split}_{position_strings[i]}_{water_strings[i]}.png'
)