@@ -71,13 +71,11 @@ model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
7171criterion = nn.CrossEntropyLoss()
7272optimizer = optim.Adam(model.parameters(), lr = 0.02 )
7373
74+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
75+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
7476loaders = {
75- " train" : DataLoader(
76- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
77- ),
78- " valid" : DataLoader(
79- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
80- ),
77+ " train" : DataLoader(train_data, batch_size = 32 ),
78+ " valid" : DataLoader(valid_data, batch_size = 32 ),
8179}
8280
8381runner = dl.SupervisedRunner(
@@ -220,13 +218,11 @@ from catalyst.contrib.datasets import MNIST
220218model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28 , 10 ))
221219optimizer = optim.Adam(model.parameters(), lr = 0.02 )
222220
221+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
222+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
223223loaders = {
224- " train" : DataLoader(
225- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
226- ),
227- " valid" : DataLoader(
228- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
229- ),
224+ " train" : DataLoader(train_data, batch_size = 32 ),
225+ " valid" : DataLoader(valid_data, batch_size = 32 ),
230226}
231227
232228class CustomRunner (dl .Runner ):
@@ -626,13 +622,11 @@ model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
626622criterion = nn.CrossEntropyLoss()
627623optimizer = optim.Adam(model.parameters(), lr = 0.02 )
628624
625+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
626+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
629627loaders = {
630- " train" : DataLoader(
631- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
632- ),
633- " valid" : DataLoader(
634- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
635- ),
628+ " train" : DataLoader(train_data, batch_size = 32 ),
629+ " valid" : DataLoader(valid_data, batch_size = 32 ),
636630}
637631
638632runner = dl.SupervisedRunner()
@@ -688,13 +682,11 @@ model = nn.Sequential(
688682criterion = IoULoss()
689683optimizer = torch.optim.Adam(model.parameters(), lr = 0.02 )
690684
685+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
686+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
691687loaders = {
692- " train" : DataLoader(
693- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
694- ),
695- " valid" : DataLoader(
696- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
697- ),
688+ " train" : DataLoader(train_data, batch_size = 32 ),
689+ " valid" : DataLoader(valid_data, batch_size = 32 ),
698690}
699691
700692class CustomRunner (dl .SupervisedRunner ):
@@ -750,13 +742,11 @@ student = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
750742criterion = {" cls" : nn.CrossEntropyLoss(), " kl" : nn.KLDivLoss(reduction = " batchmean" )}
751743optimizer = optim.Adam(student.parameters(), lr = 0.02 )
752744
745+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
746+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
753747loaders = {
754- " train" : DataLoader(
755- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
756- ),
757- " valid" : DataLoader(
758- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
759- ),
748+ " train" : DataLoader(train_data, batch_size = 32 ),
749+ " valid" : DataLoader(valid_data, batch_size = 32 ),
760750}
761751
762752class DistilRunner (dl .Runner ):
@@ -934,11 +924,8 @@ optimizer = {
934924 " generator" : torch.optim.Adam(generator.parameters(), lr = 0.0003 , betas = (0.5 , 0.999 )),
935925 " discriminator" : torch.optim.Adam(discriminator.parameters(), lr = 0.0003 , betas = (0.5 , 0.999 )),
936926}
937- loaders = {
938- " train" : DataLoader(
939- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
940- )
941- }
927+ train_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
928+ loaders = {" train" : DataLoader(train_data, batch_size = 32 )}
942929
943930class CustomRunner (dl .Runner ):
944931 def predict_batch (self , batch ):
@@ -1099,13 +1086,11 @@ class CustomRunner(dl.IRunner):
10991086 return 3
11001087
11011088 def get_loaders (self , stage : str ):
1089+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
1090+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
11021091 loaders = {
1103- " train" : DataLoader(
1104- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
1105- ),
1106- " valid" : DataLoader(
1107- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
1108- ),
1092+ " train" : DataLoader(train_data, batch_size = 32 ),
1093+ " valid" : DataLoader(valid_data, batch_size = 32 ),
11091094 }
11101095 return loaders
11111096
@@ -1202,13 +1187,11 @@ class CustomRunner(dl.IRunner):
12021187 return 3
12031188
12041189 def get_loaders (self , stage : str ):
1190+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
1191+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
12051192 loaders = {
1206- " train" : DataLoader(
1207- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
1208- ),
1209- " valid" : DataLoader(
1210- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
1211- ),
1193+ " train" : DataLoader(train_data, batch_size = 32 ),
1194+ " valid" : DataLoader(valid_data, batch_size = 32 ),
12121195 }
12131196 return loaders
12141197
@@ -1311,13 +1294,11 @@ class CustomRunner(dl.IRunner):
13111294 return 3
13121295
13131296 def get_loaders (self , stage : str ):
1297+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
1298+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
13141299 loaders = {
1315- " train" : DataLoader(
1316- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
1317- ),
1318- " valid" : DataLoader(
1319- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
1320- ),
1300+ " train" : DataLoader(train_data, batch_size = 32 ),
1301+ " valid" : DataLoader(valid_data, batch_size = 32 ),
13211302 }
13221303 return loaders
13231304
@@ -1409,13 +1390,11 @@ def objective(trial):
14091390 lr = trial.suggest_loguniform(" lr" , 1e-3 , 1e-1 )
14101391 num_hidden = int (trial.suggest_loguniform(" num_hidden" , 32 , 128 ))
14111392
1393+ train_data = MNIST(os.getcwd(), train = True , download = True , transform = ToTensor())
1394+ valid_data = MNIST(os.getcwd(), train = False , download = True , transform = ToTensor())
14121395 loaders = {
1413- " train" : DataLoader(
1414- MNIST(os.getcwd(), train = True , download = True , transform = ToTensor()), batch_size = 32
1415- ),
1416- " valid" : DataLoader(
1417- MNIST(os.getcwd(), train = False , download = True , transform = ToTensor()), batch_size = 32
1418- ),
1396+ " train" : DataLoader(train_data, batch_size = 32 ),
1397+ " valid" : DataLoader(valid_data, batch_size = 32 ),
14191398 }
14201399 model = nn.Sequential(
14211400 nn.Flatten(), nn.Linear(784 , num_hidden), nn.ReLU(), nn.Linear(num_hidden, 10 )
@@ -1582,6 +1561,7 @@ best practices for your deep learning research and development.
15821561
15831562### Documentation
15841563- [ master] ( https://catalyst-team.github.io/catalyst/ )
1564+ - [ 21.07] ( https://catalyst-team.github.io/catalyst/v21.07/index.html )
15851565- [ 21.06] ( https://catalyst-team.github.io/catalyst/v21.06/index.html )
15861566- [ 21.05] ( https://catalyst-team.github.io/catalyst/v21.05/index.html ) ([ Catalyst — A PyTorch Framework for Accelerated Deep Learning R&D] ( https://medium.com/pytorch/catalyst-a-pytorch-framework-for-accelerated-deep-learning-r-d-ad9621e4ca88?source=friends_link&sk=885b4409aecab505db0a63b06f19dcef ) )
15871567- [ 21.04/21.04.1] ( https://catalyst-team.github.io/catalyst/v21.04/index.html ) , [ 21.04.2] ( https://catalyst-team.github.io/catalyst/v21.04.2/index.html )
0 commit comments