|
| 1 | +import re |
| 2 | +import warnings |
| 3 | +from functools import partial |
| 4 | +from typing import Any, Optional, Tuple |
| 5 | + |
| 6 | +import torch.nn as nn |
| 7 | + |
| 8 | +from ...models.densenet import DenseNet |
| 9 | +from ..transforms.presets import ImageNetEval |
| 10 | +from ._api import Weights, WeightEntry |
| 11 | +from ._meta import _IMAGENET_CATEGORIES |
| 12 | + |
| 13 | + |
| 14 | +__all__ = [ |
| 15 | + "DenseNet", |
| 16 | + "DenseNet121Weights", |
| 17 | + "DenseNet161Weights", |
| 18 | + "DenseNet169Weights", |
| 19 | + "DenseNet201Weights", |
| 20 | + "densenet121", |
| 21 | + "densenet161", |
| 22 | + "densenet169", |
| 23 | + "densenet201", |
| 24 | +] |
| 25 | + |
| 26 | + |
| 27 | +def _load_state_dict(model: nn.Module, weights: Weights, progress: bool) -> None: |
| 28 | + # '.'s are no longer allowed in module names, but previous _DenseLayer |
| 29 | + # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. |
| 30 | + # They are also in the checkpoints in model_urls. This pattern is used |
| 31 | + # to find such keys. |
| 32 | + pattern = re.compile( |
| 33 | + r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$" |
| 34 | + ) |
| 35 | + |
| 36 | + state_dict = weights.state_dict(progress=progress) |
| 37 | + for key in list(state_dict.keys()): |
| 38 | + res = pattern.match(key) |
| 39 | + if res: |
| 40 | + new_key = res.group(1) + res.group(2) |
| 41 | + state_dict[new_key] = state_dict[key] |
| 42 | + del state_dict[key] |
| 43 | + model.load_state_dict(state_dict) |
| 44 | + |
| 45 | + |
| 46 | +def _densenet( |
| 47 | + growth_rate: int, |
| 48 | + block_config: Tuple[int, int, int, int], |
| 49 | + num_init_features: int, |
| 50 | + weights: Optional[Weights], |
| 51 | + progress: bool, |
| 52 | + **kwargs: Any, |
| 53 | +) -> DenseNet: |
| 54 | + if weights is not None: |
| 55 | + kwargs["num_classes"] = len(weights.meta["categories"]) |
| 56 | + |
| 57 | + model = DenseNet(growth_rate, block_config, num_init_features, **kwargs) |
| 58 | + |
| 59 | + if weights is not None: |
| 60 | + _load_state_dict(model=model, weights=weights, progress=progress) |
| 61 | + |
| 62 | + return model |
| 63 | + |
| 64 | + |
| 65 | +_common_meta = { |
| 66 | + "size": (224, 224), |
| 67 | + "categories": _IMAGENET_CATEGORIES, |
| 68 | +} |
| 69 | + |
| 70 | + |
| 71 | +class DenseNet121Weights(Weights): |
| 72 | + ImageNet1K_RefV1 = WeightEntry( |
| 73 | + url="https://download.pytorch.org/models/densenet121-a639ec97.pth", |
| 74 | + transforms=partial(ImageNetEval, crop_size=224), |
| 75 | + meta={ |
| 76 | + **_common_meta, |
| 77 | + "recipe": "", |
| 78 | + "acc@1": 74.434, |
| 79 | + "acc@5": 91.972, |
| 80 | + }, |
| 81 | + ) |
| 82 | + |
| 83 | + |
| 84 | +class DenseNet161Weights(Weights): |
| 85 | + ImageNet1K_RefV1 = WeightEntry( |
| 86 | + url="https://download.pytorch.org/models/densenet161-8d451a50.pth", |
| 87 | + transforms=partial(ImageNetEval, crop_size=224), |
| 88 | + meta={ |
| 89 | + **_common_meta, |
| 90 | + "recipe": "", |
| 91 | + "acc@1": 77.138, |
| 92 | + "acc@5": 93.560, |
| 93 | + }, |
| 94 | + ) |
| 95 | + |
| 96 | + |
| 97 | +class DenseNet169Weights(Weights): |
| 98 | + ImageNet1K_RefV1 = WeightEntry( |
| 99 | + url="https://download.pytorch.org/models/densenet169-b2777c0a.pth", |
| 100 | + transforms=partial(ImageNetEval, crop_size=224), |
| 101 | + meta={ |
| 102 | + **_common_meta, |
| 103 | + "recipe": "", |
| 104 | + "acc@1": 75.600, |
| 105 | + "acc@5": 92.806, |
| 106 | + }, |
| 107 | + ) |
| 108 | + |
| 109 | + |
| 110 | +class DenseNet201Weights(Weights): |
| 111 | + ImageNet1K_RefV1 = WeightEntry( |
| 112 | + url="https://download.pytorch.org/models/densenet201-c1103571.pth", |
| 113 | + transforms=partial(ImageNetEval, crop_size=224), |
| 114 | + meta={ |
| 115 | + **_common_meta, |
| 116 | + "recipe": "", |
| 117 | + "acc@1": 76.896, |
| 118 | + "acc@5": 93.370, |
| 119 | + }, |
| 120 | + ) |
| 121 | + |
| 122 | + |
| 123 | +def densenet121(weights: Optional[DenseNet121Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: |
| 124 | + if "pretrained" in kwargs: |
| 125 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 126 | + weights = DenseNet121Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None |
| 127 | + weights = DenseNet121Weights.verify(weights) |
| 128 | + |
| 129 | + return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs) |
| 130 | + |
| 131 | + |
| 132 | +def densenet161(weights: Optional[DenseNet161Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: |
| 133 | + if "pretrained" in kwargs: |
| 134 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 135 | + weights = DenseNet161Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None |
| 136 | + weights = DenseNet161Weights.verify(weights) |
| 137 | + |
| 138 | + return _densenet(48, (6, 12, 36, 24), 96, weights, progress, **kwargs) |
| 139 | + |
| 140 | + |
| 141 | +def densenet169(weights: Optional[DenseNet169Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: |
| 142 | + if "pretrained" in kwargs: |
| 143 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 144 | + weights = DenseNet169Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None |
| 145 | + weights = DenseNet169Weights.verify(weights) |
| 146 | + |
| 147 | + return _densenet(32, (6, 12, 32, 32), 64, weights, progress, **kwargs) |
| 148 | + |
| 149 | + |
| 150 | +def densenet201(weights: Optional[DenseNet201Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet: |
| 151 | + if "pretrained" in kwargs: |
| 152 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 153 | + weights = DenseNet201Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None |
| 154 | + weights = DenseNet201Weights.verify(weights) |
| 155 | + |
| 156 | + return _densenet(32, (6, 12, 48, 32), 64, weights, progress, **kwargs) |
0 commit comments