|
| 1 | +import os |
| 2 | +import struct |
| 3 | +import argparse |
| 4 | +import torch |
| 5 | +import numpy as np |
| 6 | +from silero_vad import load_silero_vad, __version__ as silero_version |
| 7 | + |
| 8 | +def convert_silero_vad(output_path, use_f16=True, sample_rate=16000): |
| 9 | + model = load_silero_vad() |
| 10 | + |
| 11 | + state_dict = model.state_dict() |
| 12 | + |
| 13 | + if sample_rate == 16000: |
| 14 | + model_prefix = "_model" |
| 15 | + input_channels = 129 |
| 16 | + sr_suffix = "16k" |
| 17 | + elif sample_rate == 8000: |
| 18 | + model_prefix = "_model_8k" |
| 19 | + input_channels = 65 |
| 20 | + sr_suffix = "8k" |
| 21 | + else: |
| 22 | + raise ValueError(f"Unsupported sample rate: {sample_rate}") |
| 23 | + |
| 24 | + base, ext = os.path.splitext(output_path) |
| 25 | + output_file = f"{base}-v{silero_version}_{sr_suffix}-ggml{ext}" |
| 26 | + |
| 27 | + print(f"Converting {sample_rate//1000}kHz model") |
| 28 | + print(f"Saving GGML Silero-VAD model to {output_file}") |
| 29 | + |
| 30 | + fout = open(output_file, "wb") |
| 31 | + |
| 32 | + # Write magic and version |
| 33 | + fout.write(struct.pack("i", 0x67676d6c)) # "ggml" in hex |
| 34 | + fout.write(struct.pack("i", 1)) # Version |
| 35 | + |
| 36 | + # Define and write the model architecture values |
| 37 | + fout.write(struct.pack("i", 1 if use_f16 else 0)) # Use f16 flag |
| 38 | + fout.write(struct.pack("i", sample_rate)) # Sample rate |
| 39 | + |
| 40 | + # Write dimensions for model |
| 41 | + n_encoder_layers = 4 |
| 42 | + fout.write(struct.pack("i", n_encoder_layers)) |
| 43 | + |
| 44 | + # Write encoder dimensions |
| 45 | + encoder_in_channels = [input_channels, 128, 64, 64] |
| 46 | + encoder_out_channels = [128, 64, 64, 128] |
| 47 | + kernel_size = 3 |
| 48 | + |
| 49 | + for i in range(n_encoder_layers): |
| 50 | + fout.write(struct.pack("i", encoder_in_channels[i])) |
| 51 | + fout.write(struct.pack("i", encoder_out_channels[i])) |
| 52 | + fout.write(struct.pack("i", kernel_size)) |
| 53 | + |
| 54 | + # Write LSTM dimensions |
| 55 | + lstm_input_size = 128 |
| 56 | + lstm_hidden_size = 128 |
| 57 | + fout.write(struct.pack("i", lstm_input_size)) |
| 58 | + fout.write(struct.pack("i", lstm_hidden_size)) |
| 59 | + |
| 60 | + # Write final conv dimensions |
| 61 | + final_conv_in = 128 |
| 62 | + final_conv_out = 1 |
| 63 | + fout.write(struct.pack("i", final_conv_in)) |
| 64 | + fout.write(struct.pack("i", final_conv_out)) |
| 65 | + |
| 66 | + # Helper function to write a tensor |
| 67 | + def write_tensor(name, tensor, f16=use_f16): |
| 68 | + print(f" Writing {name} with shape {tensor.shape}") |
| 69 | + |
| 70 | + # Convert to numpy |
| 71 | + data = tensor.detach().cpu().numpy() |
| 72 | + |
| 73 | + # Convert to float16 if requested (and tensor is float32) |
| 74 | + if f16 and tensor.dtype == torch.float32: |
| 75 | + data = data.astype(np.float16) |
| 76 | + |
| 77 | + # Write tensor data |
| 78 | + data.tofile(fout) |
| 79 | + |
| 80 | + print("Writing model weights:") |
| 81 | + |
| 82 | + # 1. Encoder weights |
| 83 | + for i in range(n_encoder_layers): |
| 84 | + weight_key = f"{model_prefix}.encoder.{i}.reparam_conv.weight" |
| 85 | + bias_key = f"{model_prefix}.encoder.{i}.reparam_conv.bias" |
| 86 | + |
| 87 | + # Write conv weights and biases |
| 88 | + write_tensor(weight_key, state_dict[weight_key]) |
| 89 | + write_tensor(bias_key, state_dict[bias_key]) |
| 90 | + |
| 91 | + # 2. LSTM weights |
| 92 | + write_tensor("lstm_weight_ih", state_dict[f"{model_prefix}.decoder.rnn.weight_ih"]) |
| 93 | + write_tensor("lstm_weight_hh", state_dict[f"{model_prefix}.decoder.rnn.weight_hh"]) |
| 94 | + write_tensor("lstm_bias_ih", state_dict[f"{model_prefix}.decoder.rnn.bias_ih"]) |
| 95 | + write_tensor("lstm_bias_hh", state_dict[f"{model_prefix}.decoder.rnn.bias_hh"]) |
| 96 | + |
| 97 | + # 3. Final conv layer |
| 98 | + write_tensor("final_conv_weight", state_dict[f"{model_prefix}.decoder.decoder.2.weight"]) |
| 99 | + write_tensor("final_conv_bias", state_dict[f"{model_prefix}.decoder.decoder.2.bias"]) |
| 100 | + |
| 101 | + fout.close() |
| 102 | + print(f"Done! {sample_rate//1000}kHz model has been converted to GGML format: {output_file}") |
| 103 | + |
| 104 | +if __name__ == "__main__": |
| 105 | + parser = argparse.ArgumentParser(description="Convert Silero-VAD PyTorch model to GGML format") |
| 106 | + parser.add_argument("--output", type=str, required=True, help="Path to output GGML model file") |
| 107 | + parser.add_argument("--use-f16", action="store_true", help="Use float16 precision") |
| 108 | + parser.add_argument("--sample-rate", type=int, choices=[8000, 16000], default=16000, |
| 109 | + help="Sample rate: 8000 or 16000") |
| 110 | + |
| 111 | + args = parser.parse_args() |
| 112 | + convert_silero_vad(args.output, args.use_f16, args.sample_rate) |
0 commit comments