-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
108 lines (84 loc) · 3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import random
import argparse
import numpy as np
import torch
import os
import pickle
from pathlib import Path
import symbolicregression
from symbolicregression.slurm import init_signal_handler, init_distributed_mode
from symbolicregression.utils import bool_flag, initialize_exp
from symbolicregression.model import check_model_params, build_modules
from symbolicregression.envs import build_env
from symbolicregression.trainer import Trainer
from parsers import get_parser
np.seterr(all="raise")
os.environ["CUDA_VISIBLE_DEVICES"]="0"
def main(params):
init_distributed_mode(params)
logger = initialize_exp(params)
if params.is_slurm_job:
init_signal_handler()
# CPU / CUDA
if not params.cpu:
params.device = 'cuda'
assert torch.cuda.is_available()
else:
params.device = 'cpu'
symbolicregression.utils.CUDA = not params.cpu
# build environment / modules / trainer / evaluator
if params.batch_size_eval is None:
params.batch_size_eval = int(1.5 * params.batch_size)
if params.eval_dump_path is None:
params.eval_dump_path = Path(params.dump_path) / "evals_all"
if not os.path.isdir(params.eval_dump_path):
os.makedirs(params.eval_dump_path)
env = build_env(params)
modules = build_modules(env, params)
trainer = Trainer(modules, env, params)
# training
if params.reload_data != "":
data_types = [
"valid{}".format(i) for i in range(1, len(trainer.data_path["functions"]))
]
else:
data_types = ["valid1"]
trainer.n_equations = 0
model_str_list = []
z_rep_list = []
y_list = []
y_dist_list = []
z_dist_list = []
for _ in range(params.max_epoch):
logger.info("============ Starting epoch %i ... ============" % trainer.epoch)
trainer.inner_epoch = 0
while trainer.inner_epoch < trainer.n_steps_per_epoch:
# training steps
for task_id in np.random.permutation(len(params.tasks)):
task = params.tasks[task_id]
if params.export_data:
trainer.export_data(task)
else:
encoded_y, samples, loss = trainer.enc_dec_step(task)
trainer.iter()
logger.info("============ End of epoch %i ============" % trainer.epoch)
if params.debug_train_statistics:
for task in params.tasks:
trainer.get_generation_statistics(task)
trainer.epoch += 1
if trainer.epoch % 10 == 0:
trainer.save_periodic()
if __name__ == "__main__":
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# check parameters
check_model_params(params)
# run experiment
main(params)