-Pandas is part of the `Anaconda
-Pandas can be installed via pip from `PyPI The R programming language provides the The R programming language provides the Already familiar to Already familiar to The The SAS statistical software suite
- also provides the
data.frame
data structure and multiple packages,
+ dataframe
data structure and multiple packages,
such as tidyverse use and extend data.frame
s for convenient data handling
functionalities similar to pandas.
SELECT
, GROUP BY
, JOIN
,...?
+ SELECT
, GROUP BY
, JOIN
, etc.?
Most of these SQL manipulations do have equivalents in pandas.data set
included in the
STATA statistical software suite corresponds
- to the pandas data.frame
. Many of the operations known from STATA have an equivalent
+ to the pandas dataframe
. Many of the operations known from STATA have an equivalent
in pandas.
data set
corresponding to the pandas data.frame
.
- Also vectorized operations, filtering, string processing operations,... from SAS have similar
+ also provides the data set
corresponding to the pandas dataframe
.
+ Also SAS vectorized operations, filtering, string processing operations, and more have similar
functions in pandas.
.. warning::
- There is also a :meth:`~Series.str.replace` methods available to replace a
+ There is also a :meth:`~Series.str.replace` method available to replace a
specific set of characters. However, when having a mapping of multiple
values, this would become:
diff --git a/doc/source/getting_started/tutorials.rst b/doc/source/getting_started/tutorials.rst
index 434d791474807..4c2d0621c6103 100644
--- a/doc/source/getting_started/tutorials.rst
+++ b/doc/source/getting_started/tutorials.rst
@@ -1,26 +1,14 @@
-.. _tutorials:
+.. _communitytutorials:
{{ header }}
-*********
-Tutorials
-*********
+*******************
+Community tutorials
+*******************
-This is a guide to many pandas tutorials, geared mainly for new users.
+This is a guide to many pandas tutorials by the community, geared mainly for new users.
-Internal guides
-===============
-
-pandas' own :ref:`10 Minutes to pandas<10min>`.
-
-More complex recipes are in the :ref:`Cookbook{} \".format(align)\n",
- " for serie in [test1,test2,test3]:\n",
- " s = serie.copy()\n",
+ " for series in [test1,test2,test3]:\n",
+ " s = series.copy()\n",
" s.name=''\n",
" row += \"{} \".format(s.to_frame().style.bar(align=align, \n",
" color=['#d65f5f', '#5fba7d'], \n",
diff --git a/doc/source/user_guide/text.rst b/doc/source/user_guide/text.rst
index 2e4d0fecaf5cf..bea0f42f6849c 100644
--- a/doc/source/user_guide/text.rst
+++ b/doc/source/user_guide/text.rst
@@ -8,7 +8,7 @@ Working with text data
.. _text.types:
-Text Data Types
+Text data types
---------------
.. versionadded:: 1.0.0
@@ -113,7 +113,7 @@ Everything else that follows in the rest of this document applies equally to
.. _text.string_methods:
-String Methods
+String methods
--------------
Series and Index are equipped with a set of string processing methods
@@ -633,7 +633,7 @@ same result as a ``Series.str.extractall`` with a default index (starts from 0).
pd.Series(["a1a2", "b1", "c1"], dtype="string").str.extractall(two_groups)
-Testing for Strings that match or contain a pattern
+Testing for strings that match or contain a pattern
---------------------------------------------------
You can check whether elements contain a pattern:
@@ -641,21 +641,40 @@ You can check whether elements contain a pattern:
.. ipython:: python
pattern = r'[0-9][a-z]'
- pd.Series(['1', '2', '3a', '3b', '03c'],
+ pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
dtype="string").str.contains(pattern)
Or whether elements match a pattern:
.. ipython:: python
- pd.Series(['1', '2', '3a', '3b', '03c'],
+ pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
dtype="string").str.match(pattern)
-The distinction between ``match`` and ``contains`` is strictness: ``match``
-relies on strict ``re.match``, while ``contains`` relies on ``re.search``.
+.. versionadded:: 1.1.0
-Methods like ``match``, ``contains``, ``startswith``, and ``endswith`` take
-an extra ``na`` argument so missing values can be considered True or False:
+.. ipython:: python
+
+ pd.Series(['1', '2', '3a', '3b', '03c', '4dx'],
+ dtype="string").str.fullmatch(pattern)
+
+.. note::
+
+ The distinction between ``match``, ``fullmatch``, and ``contains`` is strictness:
+ ``fullmatch`` tests whether the entire string matches the regular expression;
+ ``match`` tests whether there is a match of the regular expression that begins
+ at the first character of the string; and ``contains`` tests whether there is
+ a match of the regular expression at any position within the string.
+
+ The corresponding functions in the ``re`` package for these three match modes are
+ `re.fullmatch