|
| 1 | +# Embedding Gemma |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +**Embedding Gemma** is a state-of-the-art text embedding model from Google DeepMind, designed to create high-quality vector representations of text. Built on the Gemma architecture, this model converts text into dense vector embeddings that capture semantic meaning, making it ideal for retrieval-augmented generation (RAG), semantic search, and similarity tasks. With open weights and efficient design, Embedding Gemma provides a powerful foundation for embedding-based applications. |
| 6 | + |
| 7 | +## Intended uses |
| 8 | + |
| 9 | +Embedding Gemma is designed for applications requiring high-quality text embeddings: |
| 10 | + |
| 11 | +- **Semantic search and retrieval**: Excellent for building search systems, document retrieval, and RAG applications that need to find semantically relevant content. |
| 12 | +- **Text similarity and clustering**: Generate embeddings for measuring text similarity, document clustering, and content deduplication tasks. |
| 13 | +- **Classification and downstream tasks**: Use embeddings as input features for various NLP classification tasks and machine learning pipelines. |
| 14 | + |
| 15 | +## Characteristics |
| 16 | + |
| 17 | +| Attribute | Details | |
| 18 | +|---------------------- |--------------------------------------------------------------| |
| 19 | +| **Provider** | Google DeepMind | |
| 20 | +| **Architecture** | Gemma Embedding | |
| 21 | +| **Cutoff date** | - | |
| 22 | +| **Languages** | English | |
| 23 | +| **Tool calling** | ❌ | |
| 24 | +| **Input modalities** | Text | |
| 25 | +| **Output modalities** | Embedding vectors | |
| 26 | +| **License** | [Gemma Terms](https://ai.google.dev/gemma/terms) | |
| 27 | + |
| 28 | +## Available model variants |
| 29 | + |
| 30 | +| Model variant | Parameters | Quantization | Context window | VRAM¹ | Size | |
| 31 | +|----------------------------------------------------------------------|------------|--------------|----------------|----------|-----------| |
| 32 | +| `ai/embedding-gemma:latest`<br><br>`ai/embedding-gemma:300M-F16` | 300M | F16 | 2K tokens | 0.68 GiB | 571.25 MB | |
| 33 | +| `ai/embedding-gemma:300M-F16` | 300M | F16 | 2K tokens | 0.68 GiB | 571.25 MB | |
| 34 | + |
| 35 | +¹: VRAM estimated based on model characteristics. |
| 36 | + |
| 37 | +> `latest` → `300M-F16` |
| 38 | +
|
| 39 | +## Use this AI model with Docker Model Runner |
| 40 | + |
| 41 | +First, pull the model: |
| 42 | + |
| 43 | +```bash |
| 44 | +docker model pull ai/embedding-gemma |
| 45 | +``` |
| 46 | + |
| 47 | +Then run the model: |
| 48 | + |
| 49 | +```bash |
| 50 | +docker model run ai/embedding-gemma |
| 51 | +``` |
| 52 | + |
| 53 | +To generate embeddings using the API: |
| 54 | + |
| 55 | +```bash |
| 56 | +curl --location 'http://localhost:12434/engines/llama.cpp/v1/embeddings' \ |
| 57 | +--header 'Content-Type: application/json' \ |
| 58 | +--data '{ |
| 59 | + "model": "ai/embedding-gemma", |
| 60 | + "input": "Your text to embed here" |
| 61 | + }' |
| 62 | +``` |
| 63 | + |
| 64 | +For more information on Docker Model Runner, [explore the documentation](https://docs.docker.com/desktop/features/model-runner/). |
| 65 | + |
| 66 | +## Considerations |
| 67 | + |
| 68 | +- **Context length**: The model supports up to 2K tokens. Longer texts may need to be chunked for optimal performance. |
| 69 | +- **Language support**: Primarily trained on English text, performance on other languages may vary. |
| 70 | +- **Embedding dimension**: The model produces 768-dimensional embeddings suitable for most downstream tasks. |
| 71 | +- **Normalization**: Embeddings are normalized by default, making them suitable for cosine similarity calculations. |
| 72 | + |
| 73 | +## Benchmark performance |
| 74 | + |
| 75 | +| Task Category | Embedding Gemma | |
| 76 | +|---------------------|----------------| |
| 77 | +| Retrieval | 54.87 | |
| 78 | +| STS | 78.53 | |
| 79 | +| Classification | 73.26 | |
| 80 | +| Clustering | 44.72 | |
| 81 | +| Pair Classification| 85.94 | |
| 82 | +| Reranking | 59.36 | |
| 83 | + |
| 84 | +## Links |
| 85 | + |
| 86 | +- [Embedding Gemma Model Card](https://huggingface.co/google/embeddinggemma-300m) |
| 87 | +- [Gemma Model Family](https://ai.google.dev/gemma/docs) |
| 88 | +- [Gemma Terms of Use](https://ai.google.dev/gemma/terms) |
0 commit comments