Skip to content

Commit 1d303dd

Browse files
Ervin0307dtrawins
authored andcommitted
Update README.md (opea-project#1253)
Signed-off-by: Ervin <[email protected]> Signed-off-by: Dariusz Trawinski <[email protected]>
1 parent 9b419a4 commit 1d303dd

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

comps/retrievers/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
This retriever microservice is a highly efficient search service designed for handling and retrieving embedding vectors. It operates by receiving an embedding vector as input and conducting a similarity search against vectors stored in a VectorDB database. Users must specify the VectorDB's URL and the index name, and the service searches within that index to find documents with the highest similarity to the input vector.
44

5-
The service primarily utilizes similarity measures in vector space to rapidly retrieve contentually similar documents. The vector-based retrieval approach is particularly suited for handling large datasets, offering fast and accurate search results that significantly enhance the efficiency and quality of information retrieval.
5+
The service primarily utilizes similarity measures in vector space to rapidly retrieve contextually similar documents. The vector-based retrieval approach is particularly suited for handling large datasets, offering fast and accurate search results that significantly enhance the efficiency and quality of information retrieval.
66

77
Overall, this microservice provides robust backend support for applications requiring efficient similarity searches, playing a vital role in scenarios such as recommendation systems, information retrieval, or any other context where precise measurement of document similarity is crucial.
88

0 commit comments

Comments
 (0)