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Introduction

One of the greatest shortcomings of standard cosmological models is the absence
of a definite explanation of the asymmetry between matter and antimatter in
the Universe. It is possible to trace back the relative proportions of the nuclei
to a single parameter, which can be interpreted as the difference between the
number density of baryons and antibaryons; such parameter, however, remains
unexplained from first principles in standard cosmology.

The question which is posed is therefore whether it is possible to start with a
net zero baryonic number and end up with a non vanishing one. It is clear that
such a result requires some specific conditions on the nature of the processes
happening in nature; in particular, they have been outlined in detail by Sakharov
[1]. Although at a qualitative level these conditions are already present in the
Standard Model, it has been found that quantitatively they are not able to
produce the correct baryon asymmetry which is experimentally measured.

It turns out, as will be discussed in detail in this work, that a possibility for
the realization of these conditions is to simply extend the Standard Model with
the addition of massive particles subject to CP-violating decays into states with
a non vanishing lepton number; this accounts for the generation of a net leptonic
number, which is then converted, through a process of non perturbative nature
already present in the Standard Model, into a net baryonic number. The whole
scenario is known as baryogenesis via leptogenesis [2]; a particularly attractive
possibility lies in the identification of the massive particles with the right-handed
neutrinos in the context of the seesaw mechanism proposed by Minkowski [3]
and Gell-Mann, Ramond and Slansky [4].

Since right-handed neutrinos appear naturally in the grand unified model
based on the group SO(10) [5], it is of interest to discuss leptogenesis under
the constraints suggested by such a model. It turns out, however, that such
constraints render a successful leptogenesis extremely difficult to obtain. This
happens because, unless a fine tuning on the neutrino mass parameters is in-
troduced, the right-handed neutrinos become very hierarchical in mass, with
the lowest mass being too small to allow for leptogenesis. A compactness in
the right-handed neutrino mass spectrum is, however, able to overcome this
difficulty and achieve a consistent leptogenesis.

Our task in this work may thus be described as follows; in the context
of a specific seesaw model, whose features are inspired by the mass relations
naturally arising in the context of SO(10), we have derived the relations between
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the right-handed neutrino mass spectrum and the parameters of the Standard
Model neutrino masses and mixing. We briefly recall (this will be described in
detail below) that such parameters consist of the masses of the three neutrinos,
three mixing angles, a CP violating phase and two Majorana phases; only the
squared mass differences can be fixed from experiments on mixing, so the lightest
of the masses remains unknown (although of course bounds on it are known
mainly from beta decay experiments). Random values for the mixing angles have
been generated inside the experimentally allowed ranges, and for each generation
a compactness condition has been imposed on the right-handed neutrino mass
spectrum to determine the other parameters. We have looked for correlations
between the parameters which allow such a compact spectrum.

On these points in the space of parameters a further constraint has been
imposed for successful leptogenesis; through the kinetic equations the numerical
values for the baryon number density have been deduced in order to compare
them to the experimentally known values and exclude then some of these points.

The main purpose of this work has therefore been that of restricting the range
of neutrino mass parameters through constraints coming from the assumption
that they are at the same time responsible for the genesis of the asymmetry
between matter and antimatter.
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Chapter 1

Standard Model of Particles
and some extensions

1.1 The Standard Model

The Standard Model of particles [6] is based on the simple assumption that
particles are classified into representations of the local gauge symmetry group
SU(3) × SU(2) × U(1); for this presentation, we will simply state the various
representations found in nature. The behavior of a given field under SU(3) and
SU(2) is specified simply by the dimension of the representation to which it
belongs; we recall that, given a multiplet ψ, a gauge transformation acts on it
as:

ψ′ = eigtaθ
a(x)ψ (1.1)

where g is the coupling constant, ta are the group generators and θa(x) are the
gauge parameters. Given the free field Lagrangian, a gauge invariant Lagrangian
can then be obtained by the so called minimal coupling through the substitution
of the ordinary derivative ∂µ by the covariant derivative ∂µ−igAaµta. Here Aaµ is
a vector field belonging to the adjoint representation of the gauge group which
transforms under (1.1) as:

A′aµ (x)ta = eigtbθ
b(x)Aaµ(x)tae

−igtbθb(x) + ∂µθ
a(x)ta (1.2)

In the case of U(1), the gauge transformation takes the form:

ψ′ = eiY g
′θ(x)ψ (1.3)

where g′ is a universal coupling constant and Y is the hypercharge, which is
different for each particle.

Strong interactions are described in the Standard Model by coupling with the
eight gauge fields of SU(3); weak and electromagnetic interactions are obtained
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as a result of a mixing of the coupling with the three gauge fields of SU(2)
and the single gauge field of U(1). This mixing produces a coupling with the
electromagnetic field proportional to the electromagnetic charge, which is linked
to the generators of SU(2) × U(1) through the famous Gell-Mann-Nishijima
relation1:

Q =
Y

2
+
t3
2

(1.4)

where Q is the charge and t3 is the eigenvalue of the third generator of SU(2)
(we take the convention ta = σa).

The complete Lagrangian of the Standard Model can thus be written as:

L = Lmatter + Lgauge + LHiggs + LY ukawa (1.5)

The kinetic terms will not be written hereafter.

Matter fields

Because of the parity violation of weak interactions, left-handed and right-
handed fields generally behave differently under the SU(2) × U(1) part of the
gauge group. Leptons, which do not interact strongly, are singlets of SU(3); left-
handed leptons (electron and electron neutrino), which interact weakly, trans-
form as a 2 under SU(2) and have hypercharge −1. The Standard Model
considers neutrinos to be massless; under this assumption, it is well known that
right and left-handed components of the field decouple. In the Standard Model,
the right-handed component of neutrinos is considered to be missing; therefore,
we only need to add the massive leptons right-handed fields, which are singlets
under SU(2) and have Y = −1.

Quarks, which do interact strongly, come under the representation 3 of
SU(3); their left-handed components are organized into doublets of SU(2) with
hypercharge Y = 1/3. The right-handed components are singlets under SU(2)
and have hypercharge 4/3 and −2/3. As is well known, there are three families
of quarks and three families of leptons; therefore, all matter particles in the
Standard Model are organized into the structures in Table 1.1.

Each of these representations is repeated three times because of the presence

of three different families (

(
u
d

)
,

(
c
s

)
,

(
t
b

)
for quarks and

(
e
νe

)
,

(
µ
νµ

)
,

(
τ
ντ

)
for leptons).

Higgs and SU(2)× U(1) gauge

A further doublet of complex scalar fields is needed in order to give mass to three
of the gauge fields of SU(2)×U(1) through the Brout-Englert-Higgs mechanism

1The Gell-Mann-Nishijima relation of course refers to the identical relation derived for the
SU(2) group of isospin; they however express exactly the same physical content.
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Particles SU(3) SU(2) Y

qL =

(
uL
dL

)
3 2 1

3

uR 3 1 4
3

dR 3 1 − 2
3

lL =

(
eL
νeL

)
1 2 −1

eR 1 1 −2

Table 1.1: Matter content of the Standard Model

[7, 8]. This Higgs field φ does not couple to SU(3) gauge fields; moreover, we
want it to be a neutral particle2. Without loss of generality we can choose a
gauge in which the Higgs field has only the t3 = −1 component; then (1.4) shows
that, in order for the field to be electrically neutral, it should have hypercharge
+1. In order for the field to spontaneously break SU(2) symmetry, we also

introduce a potential which is minimized at |φ|2 equal to a certain vacuum
expectation value. The previous symmetry considerations constrain the part of
the Lagrangian involving SU(2) × U(1) gauge fields and the Higgs field to the
following form3:

LMS =

∣∣∣∣∂µφ− igW a
µ

ta
2
φ− ig

′

2
Bµφ

∣∣∣∣2 + µ2|φ|2 − λ2|φ|4 (1.6)

(the factor of 2 in the definition of the generator of SU(2) is conventional).
The form of the potential for φ is chosen so that symmetry is spontaneously

broken in the ground state: to see this at a quantum level would require to
explicitly compute the effective potential [9]. At the classical level, however,
it is easily seen that the potential is minimized for |φ| = v = µ√

2λ
, and we

are allowed to choose the gauge in such a way that φ =

(
0

v + η

)
. After the

substitution, separating out the terms which do not contain η, we obtain:

g2

4
v2
(
W+µW−µ + (W 3)2

)
+
g′2

4
B2v2 − gg′

2
v2W 3

µB
µ (1.7)

where W± = W 1 ± iW 2. This is easily rewritten as:

g2

4
v2W+W− +

1

4
v2
(
gW 3 − g′B

)2
(1.8)

2This requirement comes from the physical observation that the photon is massless.
3The form of the potential is the simplest one, and is the only one which does not involve

non renormalizable terms.
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We have obtained the result that three of the generators of SU(2) × U(1)
are massive, while the other, namely g′W 3 + gB, has remained massless. This
last one is of course to be identified with the photon field; after using the correct
normalization, we find the electromagnetic field:

A =
gB + g′W 3√
g2 + g′2

(1.9)

The other three generators are instead identified with the three massive
vector bosons of the weak interaction. Since (1.9) has the form of a rotation, it
is usually parameterized in terms of an angle of rotation known as the Weinberg
angle:

tan θw =
g′

g
(1.10)

Yukawa couplings

We can use the same Higgs field to give mass to the other matter fields of the
Model. Mass terms couple left-handed with right-handed fields; this means that
we have to introduce Yukawa couplings between the Higgs field, the left-handed
doublets and the right-handed fields. For the leptons, due to the existence of
a single right-handed field per family (eR in the first family), there is a single
possible term, which is written as (lLφ)eR (lL is the left-handed lepton doublet).
For the quarks, due to the existence of two right-handed fields, we have two
possible terms; in order for these to give the correct mass terms, we need to

introduce the conjugate field to the Higgs φc =

(
v + η

0

)
. Experimentally, it is

found out that mass eigenstates are generally linear combination of the three
generations weak interaction eigenstates; therefore we now explicitly introduce
a family index i which runs from 1 to 3. The part of the Lagrangian which,
upon spontaneous symmetry breaking, will give mass to the matter fields is:

−Yl
(
lLφ
)
eR − Y iju (qiLφ

c)ujR − Y ijd (qiLφ) djR + h.c. (1.11)

where qiL are the three left-handed quark doublets, ujR = (uR, cR, tR) and
djR = (dR, sR, bR).

After substituting for φ its vacuum expectation value, the Lagrangian will
contain mixing terms between the weak eigenstates of quarks; mass eigenstates
are determined by diagonalizing this part of the Lagrangian. The two matrices
Y iju and Y ijd are not necessarily symmetric; they can be put into a diagonal

form through the transformation Yu,d = Uu,dMu,dK
†
u,d, where M are diagonal

matrices and U and K are unitary matrices. The matrices Uu,d are then used
as matrices of a basis change from the weak eigenstates to the mass eigenstates;
upon reexpressing the weak interaction part of the Lagrangian in the mass basis,
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we find that the interaction produces a mixing between mass eigenstates through
the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix [10, 11]:

V = U†uUd (1.12)

Through the CKM matrix, the weak interaction coupling terms involving quarks
can be written in terms of the mass eigenstates (which, by an abuse of notation,
we will once again call u and d) as:

g
(
W+
µ u

i
Lγ

µVijd
j
L + h.c.

)
(1.13)

The CKM is a complex 3-by-3 unitary matrix, so it has 9 real parameters. We
can redefine the six left-handed fields by a U(1) transformation; if we redefine
all of them, however, the matrix V is left unchanged. After redefining five of
them, we are left with 4 parameters, which are conveniently chosen according
to the following convention:

V =

1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 cos θ13 0 sin θ13e
iδ

0 1 0
− sin θ13e

iδ 0 cos θ13


 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

 (1.14)

1.2 Neutrino masses and mixing

In the Standard Model neutrinos appear only as left-handed fields; as is well
known, this requires necessarily that neutrinos are massless, since a Dirac mass
term couples left-handed and right-handed fields.

Neutrino oscillations

As evidenced for the first time by the Super-Kamiokande experiment [12], neu-
trinos are subject to oscillations between different flavours; by this we mean
that a neutrino created with a specific lepton flavor is later measured to have
a different flavor. This implies that the weak eigenstates νe, νµ, ντ which we
have used so far are not eigenstates of the Hamiltonian for free neutrinos, and
therefore are not mass eigenstates. Let us exemplify how the presence of a mix-
ing mass term could produce flavor oscillations by a simple two state example;
suppose that the mass part of the Lagrangian is diagonalized by the two states:

|ν1〉 = α |νe〉+ β |νµ〉 , |ν2〉 = α∗ |νµ〉 − β∗ |νe〉 (1.15)

with masses respectively m1 and m2. Then, if a neutrino is produced in the weak
eigenstate |νe〉, its subsequent time evolution will be given, after decomposition
on the mass eigenstates:

|ψ(t)〉 = α∗ |ν1〉 e−iE1t − β |ν2〉 e−iE2t (1.16)
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where Ei =
√
p2 +m2

i . Multiplying on the left by 〈νe| and 〈νµ| and taking the
square moduli, it is seen that the probabilities of finding the neutrino in one
of the two weak eigenstates oscillates periodically with a frequency |E1 − E2|;
since neutrino masses are expected to be extremely small, we can expand the
square root in the dispersion relation to obtain:

|E1 − E2| ≈
∣∣m2

1 −m2
2

∣∣
2p

(1.17)

The results of this simple model are straightforwardly generalizable to the com-
plete three-flavor case; it is then evident that oscillation experiments allow us
to have information on the absolute squared mass differences between different
species4. The matrix relating weak eigenstates to mass eigenstates is known as
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [13]. The parametriza-
tion generally used for the PMNS matrix is very similar to the one introduced
in Section 2.1 for the CKM matrix; the only difference is that, to take into
account the possibility that neutrinos are described by Majorana spinors, there
are two additional phases (apart from a global phase multiplying the whole ma-
trix) which cannot be removed by a redefinition of the fields. We will often need
the explicit form of this parametrization:

U =

1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 cos θ13 0 sin θ13e
iδ

0 1 0
− sin θ13e

iδ 0 cos θ13


 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

1 0 0
0 eiα 0
0 0 eiβ

 (1.18)

where, of course, the angles are different from and independent of the corre-
sponding angles in the CKM matrix.

If we make the additional assumption that for the heavy leptons e, µ and
τ weak eigenstates coincide with mass eigenstates, then the interaction terms
become, in terms of the mass eigenstates νi:

g
(
W+
µ e

i
Lγ

µUijν
j + h.c.

)
(1.19)

The problem of introducing a mass term for neutrinos is far from trivial;
it is clear that a Dirac term would require the introduction of a right-handed
field. Then we could add to the Lagrangian a term of the same form as for the
quark sector, thus giving a Dirac mass to neutrinos. The disadvantage of this
possibility is that it does not explain the smallness of neutrino masses; it would
be more aesthetically appealing to find a mechanism which leads naturally to
small values for these masses.

4We mention here that in literature, because of the way they were historically measured,
the two squared mass differences δm2 and ∆m2 and the angles θ12 and θ23 are referred to as
solar and atmospheric parameters.
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A Majorana mass could be given to neutrinos without the right-handed field;
in order to do that without breaking SU(2) invariance, however, the minimal
choice is the non renormalizable Weinberg operator [14]:

Mij

(
l
i

Lφ
c
) (
φcliL

)†
(1.20)

Diagrammatically this is represented in Figure 1.1.

Figure 1.1: Diagrammatical representation of the Weinberg operator; the ellipse
stands for the renormalizable mechanism expected to generate the effective ver-
tex.

After spontaneous symmetry breaking, this term translates into a Majo-
rana mass term for neutrinos. In order for neutrinos to have masses consistent
with experimental bounds, the coefficients Mij should of course be very small.
The non renormalizability of the Weinberg operator and the smallness of the
neutrino mass can both be explained by the presence of a renormalizable in-
teraction characterized by a large mass scale M ; then neutrino masses will be
suppressed by a factor M−1, and the low-energy physics will be characterized
by the Weinberg operator.

An important feature of (1.20) is that, in the hypothesis that neutrinos
are described by Dirac spinors with a Majorana mass term, lepton number is
not conserved. If neutrinos were instead described by Majorana spinors with a
Majorana mass term, then they are forced to carry zero lepton number, so the
term in (1.20) conserves lepton number; anyway, in weak interactions lepton
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number would not be conserved5. Thus the only way for lepton number to be
conserved would be if neutrinos were described by Dirac spinors with Dirac mass
terms.

Seesaw mechanism

Our aim is to look for a renormalizable mechanism which is able to reproduce,
in the low-energy limit, the Weinberg operator. A simple possibility is given by
the so called seesaw mechanism [4]; this requires the introduction of a heavy
right-handed neutrino which couples to the left-handed neutrino and to the
Higgs boson through the following SU(2) invariant terms (for simplicity we will
restrict to a single flavor):

−1

2
MN

c

RNR − λ
(
lLφ

c
)
NR + h.c. (1.21)

The new coupling gives rise to the diagram in Figure (1.2); we can compute
the amplitude of the diagram to obtain an effective Weinberg operator for neu-
trinos which is suppressed by a factor 1

M (the same result can also be obtained
by explicit integration of the NR degree of freedom). Let us derive the same
result in another way.

Figure 1.2: Diagrammatical representation of the Weinberg operator in the
context of seesaw model.

After spontaneous symmetry breaking, the Higgs field acquires a vacuum
expectation value, so that in (1.21) the following terms appear:

−1

2
MN

c

RNR − λvνLNR + h.c. = −1

2

(
N
c

R νL
)(M λ∗v

λv 0

)(
NR
νL

)
(1.22)

The matrix in (1.22) can now be diagonalized to give the mass eigenstates;
the eigenvalues of the matrix, which are the masses of the two eigenstates, turn

out to be approximately M and v2|λ|2
M = |MD|2

M (the notation MD is chosen to
underline that the coupling term between νL and NR has the form of a Dirac

5This is evident, for example, in beta decay, where an electron and an antineutrino are
produced; if the antineutrino brings zero lepton number, then this quantity is not conserved.
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mass term). We are once again led to the conclusion that the mass of neutrinos,
in the seesaw mechanism, is suppressed by a factor 1

M .
In the seesaw mechanism, as we noted at the end of the above section, lepton

number conservation is naturally violated; this will be an important feature in
the context of baryogenesis.

We have not commented on the nature of the spinors involved in the seesaw
mechanism, whether they are Dirac or Majorana spinors. Both possibilities are
admitted by theory; for the following we will assume that they are Majorana
spinors.

In the case of seesaw with different flavors, M and MD are promoted to
matrices with flavor indices, and the neutrino mass matrix becomes:

Mν = MT
DM

−1MD (1.23)

In (1.23) we have made the hypothesis that there was a right-handed neutrino
per family. It is clear that for each right-handed neutrino a left-handed neutrino
becomes massive; since the Super Kamiokande experiment provides us with
information only on squared mass differences, there is still the possibility that
only two of the neutrinos are massive, and thus that there exist only two right-
handed neutrinos. As we will see in the next section, however, in the context of
Grand Unified Theories, it is natural to assume that there exists a right-handed
neutrino per family.

The mechanism which we have described is known in literature as the seesaw
type I, in order to distinguish it from similar possibilities; we mention here the
seesaw type II [15] since it naturally appears in SO(10) models. This mechanism
requires the introduction of an SU(2) triplet of scalar particles interacting both
with leptons and with the Higgs through Yukawa couplings. The exchange of
these particles generates an effective coupling between leptons and Higgs which
has the form of the Weinberg operator, and is thus able to endow neutrinos with
Majorana masses.

1.3 Grand Unified Theories

It is tempting to hypothesize that the gauge group of the Standard Model could
be embedded into a larger simple group. The advantages of such a possibility are
not merely aesthetic. In the Standard Model the U(1)Y part of the gauge group
has generators which are not quantized; this implies that the quantization of
the electric charge comes as a mere coincidence. We will see that, in the context
of Grand Unified Theories, electric charge becomes a combination of generators
of larger groups, and thus it becomes naturally quantized.

SU(5) Grand Unification

Since the standard SU(3) × SU(2) × U(1) admits four diagonal generators
(hypercharge Y , the third generator of SU(2) t3 and the two generators λ3 and

12



λ8 of SU(3)), it is clear that the larger gauge group must have at least rank 4; it
should also contain as a subgroup the standard SU(3)×SU(2)×U(1). Among
the groups which are simple or can be written as products of simple groups, the
only possibility is SU(5) [16]; we follow the treatment given in [17].

The way in which representations in SU(5) are decomposed into representa-
tions of the Standard Model is easily written down; in the fundamental repre-
sentation ψα (where α runs from 1 to 5) we interpret the indices from 1 to 3 as
color indices of SU(3) and the indices 4 and 5 as isospin indices of SU(2). Then
it is evident that the 5 of SU(5) decomposes as a (3,1) and a (1,2) (we have
indicated the dimensions of the SU(3) and SU(2) representations). Since the
3 of SU(3) must correspond to quarks, and we know that left-handed quarks
come into doublets of SU(2), we find that 5 contains a triplet of SU(3) which
can be identified with a right-handed quark (the d quark for the lightest fam-
ily) and a leptonic doublet (which is identified with νeL and eL for the lightest
family). By analogous reasoning, we find that the other matter particles of the
Standard Model can be fit into the 10 representation, which decomposes into
a (3,1) (the right-handed u quark), a (1,1) (the right-handed electron) and a
(3,2) (the two left-handed u and d quarks).

Since we have identified the 4 diagonal generators of the Standard Model
with the 4 roots of SU(5), we find that electric charge is naturally quantized
and traceless. This implies the fundamental relation 3Qd −Qe = 0.

Of the 24 generators of SU(5), only 12 are identifiable with the generators of
the Standard Model. The other 12 must evidently be made unobservable at low
energies by a spontaneous symmetry breaking mechanism; this can be realized
through the introduction of a 24 scalar field which, in an analogous way to the
spontaneous breaking of SU(2) symmetry, gives mass to the 12 fields which are
not present in the Standard Model. Since these fields mix color and isospin
indices, they are able to produce baryon number violating processes such as
the proton decay. The fact that these processes have never been observed put
a constraint on the masses of such bosons, which is the scale at which grand
unification happens, to be greater than 1015 GeV .

Mass terms for fermions in SU(5) are produced by spontaneous symmetry
breaking just as in the Standard Model; the minimal choice requires the intro-
duction of a Higgs field belonging to the representation 5. If we denote the 5
and the 10 matter fields by ψµ and φµν (the latter is antisymmetrical in its
indices) and the Higgs field by χµ, then the mass term will originate from the
Yukawa couplings:

λ1ψµφ
µνχ∗ν + λ2φ

µν
φαβχδεµναβδ (1.24)

By explicit substitution we can now find the mass relations Md = Me, Ms = Mµ

and Mb = Mτ .
These relations are to be verified at the unification mass scale of 1015 GeV ; by

renormalization group arguments it is seen that the last one is well verified, while
the others are violated. It is possible to adjust this prediction by introducing
another 45 Higgs field which gives more freedom and allows to maintain the
last prediction while modifying the others; Georgi and Jarlskog [18] have shown
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that the use of three 5 and a 45 leads to mass relations of the form Mb = Mτ ,
Mµ = 3Ms and Me = Md

3 , which are instead roughly verified at the unification
scale.

Let us derive another fundamental consequence of SU(5) grand unification.
The covariant derivative in SU(5) is characterized by a single coupling g5; among
the generators of the group 3 will correspond to the three generators of SU(2)
in the space of the two indices 4 and 5 and another one will correspond to
hypercharge, with a coefficient properly chosen so that the generators satisfy
the relation:

Tr {ta, tb} = 2δab (1.25)

This implies that the fermionic coupling with the generators of the Standard
Model SU(2) and U(1) will be completely specified in terms of the coupling g5.
It is then possible to obtain a prediction for the value of the Weinberg angle at

the scale of Grand Unification; it turns out that tan θw =
√

3
5 .

Pati-Salam Grand Unification

A completely different possibility of Grand Unification lies in the observation
that the Standard Model explicitly breaks left-right symmetry, since the weak
interaction involves the group SU(2)L. It is possible to restore left-right sym-
metry by introducing another group SU(2)R; in order to do that, we clearly
have to introduce a right-handed neutrino which has to be the SU(2)R partner
of the electron. The Pati-Salam model of unification [19] further generalizes
the SU(3) gauge group to a SU(4), where the fourth ”color” is identified with
the leptonic doublet. The matter content of this unified model is now clearly
a (4,2,1) (where we have indicated the dimension of the representation under
SU(4), SU(2)L and SU(2)R respectively) for the left-handed quarks and leptons
and a (4,1,2) for the right-handed quarks and leptons.

As in the previous section, we need a Higgs field in order to break SU(4)
symmetry to SU(3)×U(1) and to break SU(2)R; clearly, the minimal choice is
(4,1,2).

In order to give mass to fermions, another Higgs field needs to be introduced;
since such a field has to couple the (4,2,1) and the (4,1,2), the minimal choice
is a (1,2,2).

SO(10) Grand Unification

Both SU(5) and the Pati-Salam model can be embedded into a larger, sim-
ple group, SO(10) [5]. This embedding is slightly more complicated than the
previous, due to the fact that SO(10) is an orthogonal group. As a matter of
fact, many alternative routes can be found which break SO(10) to the Standard
Model gauge group; these are summarized in Figure 1.3. To fix ideas, we will
concentrate on the breaking of SO(10) to SU(5). We follow here the treatment
given in [20] and [21].
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Figure 1.3: Symmetry breaking patterns of SO(10) to SU(3) × SU(2) × U(1);
taken from [22]

The fundamental tensor representation of SO(10), φα (with α running from 1
to 10), can be easily decomposed into representations of SU(5) after forming the
combinations ψi = (φ1 + iφ6, φ2 + iφ7, ..., φ5 + iφ10) and the complex conjugate
ψi. Since the squared modulus of ψ is the same as the squared modulus of φ, we
find that U(5) is a subgroup of SO(10), and that ψ and ψ transform as a 5 and
a 5 respectively. By composing the representations, it is easy to see that the 45
generators of SO(10) decompose into SU(5) in 24 (which will be associated to
the 24 generators of SU(5)), 1, 10 and 10.

More complicated is the identification of the matter content of the Stan-
dard Model. This is to be found in the spinor representation of SO(10); this
representation is obtained by the observation that it is possible to construct 10
32 × 32 matrices Γj which satisfy the anticommutation relations:

{Γα,Γβ} = 2δαβ (1.26)

The matrices σαβ = 1
2 [Γα,Γβ ] now satisfy the same commutation relations

as the orthogonal generators of SO(10); it follows that the column spinor of
32 components which is acted upon by the Γj constitutes a representation of
SO(10). This representation is reducible; in fact, the operator Γ11 = −Γ1...Γ10

anticommutes with all other Γα. It follows that the space of spinors decomposes
into eigenstates of Γ11 with positive and negative eigenvalues. We have thus
found that SO(10) admits irreducible 16+ and 16− (according to the sign of
the eigenvalue of Γ11) representations.

Next question involves the decomposition of these representations into rep-
resentations of SU(5). To obtain these, notice that the generators of SO(10),
which we know how to decompose into representations of SU(5), should trans-
form 16 into itself. The 45 generators of SO(10) include a singlet under SU(5)
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and its 24 generators which leave the dimension of the SU(5) representations
composing the 16 unchanged. The other 10 and 10 components are represented
in SU(5) as tensors with two lower or upper indices antisymmetrized; it follows
that the 16 should decompose into representations of SU(5) which differ from
one another by a couple of antisymmetrical indices. It can then be seen that
there are two possibilities: the 16+ decomposes into 1, 5 and 10, while the 16−

into the complex conjugates. From our previous experience with SU(5), we see
that the matter fermions fit perfectly into the 16+.

An useful way of looking at the decomposition of SO(10) into SU(5) is to
notice that matrix elements between two spinors of Γµ transform as vectors
of SO(10); thus we can form the combination Γi = (Γ1 + iΓ6, ...) and Γi =
(Γ1 − iΓ6, ...) (with i running from 1 to 5) which transform as a 5 and a 5
under SU(5). Then the spinor representation of SO(10) can be written as:

ψ = θ + (Γiθ)ψ
i + (ΓiΓjθ)φ

ij + (ΓiΓjΓkθ) η
ijk

+ (ΓiΓjΓkΓlθ) ξ
ijkl + (ΓiΓjΓkΓlΓmθ) ζ

ijklm
(1.27)

which can be rewritten as:

ψ = θ + (Γiθ)ψ
i + (ΓiΓjθ)φ

ij + (ΓiΓjΓkθ) ε
ijklmηlm

+ (ΓiΓjΓkΓlθ) ε
ijklmξm + (ΓiΓjΓkΓlΓmθ) ε

ijklmζ
(1.28)

where θ is an SO(10) spinor which behaves as a singlet under SU(5). By
dividing out the terms according to their behavior under Γ11 we find the de-
composition which we have stated somewhat heuristically above. In particular,
16+, into which the matter fields falls, decompose as:

ψ = θνR + (ΓiΓjθ)φ
ij + (ΓiΓjΓkΓlθ) ε

ijklmψm (1.29)

where φij and ψm are the matter fields of SU(5) (the field which appears in the
singlet term is explained below).

The SU(5) singlet which appears in the 16+ should represent a particle
which does not interact through any of the Standard Model interaction; it is
tempting to identify it with the right-handed neutrino of the seesaw mechanism.
To complete this identification, we should discuss the fermion mass terms. The
invariant SO(10) combinations which can be constructed are the following:

Y abψTa CΓµψbφ
µ, Y abψTa CΓµΓνΓαψbφ

µνα, Y abψTa CΓµΓνΓαΓβΓσψbφ
µναβσ

(1.30)

where a,b are flavor indices (the combinations with an even number of Γj van-
ishes because the spinors are eigenstates of Γ11) and C is the charge conjugation
operator. We see that the possible Higgs representations which give mass to the
fermions are the 10, the 120 and the 126; in particular, since we are dealing
with fermions, the terms need to be antisymmetric in the exchange of fields. It
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can now be proved that this implies that the matrix Yab is antisymmetric for
the 120 and symmetric for the 10 and 126.

The seesaw mechanism requires the presence of a Majorana mass term for
the singlet of SU(5); among the above three possibilities, only the 126 contains,
in its decomposition into SU(5) representations, a singlet which can give such
a mass term.

Let us give an example of how one of the previous mass terms, the 10,
breaks the SO(10) symmetry to SU(5). Since the Standard Model group should
stay unchanged, only the 5 and 10 components of the field φµ can acquire non
vanishing expectation values; we can substitute (1.29) into the corresponding
mass term. The problem reduces to the computation of matrix elements of
products of Γj ; without even doing the calculations we can infer by symmetry
that the only non vanishing elements will be θΓiΓjθ ∝ δij , θΓiΓkΓjΓlθ ∝ δilδkj −
δijδ

k
l (together with all elements which contain an equal number of Γi and Γi)

and θΓiΓjΓkΓlΓmθ ∝ εijklm. An explicit calculation brings then to the following
mass rules:

Mu = MDν , Md = Ml (1.31)

where Mu, MDν , Md and Ml are respectively the mass matrices (in flavor space)
of the up quark generation, the Dirac neutrino mass terms, the down quark
generation and the heavy leptons.

An analogous reasoning with the 126 leads to similar relations:

MDν = −3Mu, Ml = −3Md (1.32)

We will discuss the consequences of this mass relation in Chapter 3, in con-
nection with the specific model of symmetry breaking which we have used in
this work.

Let us also briefly describe the simplest way of breaking the SO(10) symme-
try to SU(5), that is, the Higgs field needed to give mass to the gauge bosons.
The generators in SO(10) carry two antisymmetric indices, so that the simplest
mass term which we can add to the Lagrangian is:

−1

2
AijAlmΦijlm (1.33)

where Aij are the gauge fields and Φijlm is an Higgs field which evidently must
be antisymmetric in the first and the second couple of indices and symmetric in
the exchange of the two couples of indices with one another; the easiest choice is
to take it to be antisymmetric under the exchange of any possible couple. This
representation, which is a 210 in SO(10), contains in its decomposition under
SU(5) a 24, which we recall to be the representation needed to break SU(5)
symmetry to SU(3) × SU(2) × U(1); it follows that this is the minimal choice
of Higgs fields necessary to break down the SO(10) symmetry.
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1.4 Anomalies

An anomaly is generally defined as the breaking of a symmetry of a classical
theory upon quantization [23, 24]. There are various ways in which the presence
of an anomaly might be understood, so we will start by giving some heuristic
notions about such a phenomenon.

Quantum field theory was actually faced with the presence of an anomaly
since its beginning when it was understood that there was the necessity of a
renormalization procedure. Let us look at the simplest classical field theory, the
massless φ4 theory:

L =
1

2
(∂φ)

2 − 1

4!
λφ4 (1.34)

It is evident that, under the set of transformations x′ = αx, φ′ = φ
α the

action stays unchanged. We therefore expect that a change of scale of length,
or, equivalently, a scale of energy, should be a symmetry of the quantum theory
as well as of the classical one. As is well known, however, on the quantum level
the coupling constant λ is not constant but it depends on the scale of energy.
On dimensional grounds, we have no parameter in the Lagrangian which has
the dimensions of an energy, so there seems to be no correct dimensional way
of expressing the dependence of λ on the scale of energy. The resolution of
the paradox, of course, is that the instantaneous and pointlike interaction of
the classical theory leads to divergences upon quantization, and must then be
smoothed out through the introduction of a cutoff length scale (or, equivalently,
a cutoff energy scale) which provides us with a parameter with the dimensions of
an energy Λ. Scale invariance is then said to be anomalous, due to the fact that,
in order to regularize the theory, one has to explicitly break such an invariance.

We can understand this breaking of scale invariance in a different way by
looking at the path integral; the measure of the functional integral, in fact, is
clearly not invariant under the transformation introduced above. We will show
below that the non invariance of the functional measure in the path integral is
the source of chiral anomaly as well as of scale invariance.

Chiral anomaly as pair production

We will show below that another anomaly is present on a quantum level. A
simple way of understanding it is to notice that, in the presence of an electric
field, electrons-positrons pairs can be produced6; if in the same region of space
a magnetic field is present which is parallel to the electric field, pairs will be
produced preferentially with the positron spin aligned along B and the electron
spin antiparallel to it. This implies that chiral symmetry will be automatically
broken by quantum fluctuations; our main task will be to derive mathematically
this result.

Notice that this results depends critically on the infinities which are present
in the quantum theory. The production of pairs, in fact, can be seen as the

6We can consider in this section the electromagnetic field to be classical; no changes are
introduced in the relations which will be derived below
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raising of a particle in the Fermi sea above the Fermi level; if the Fermi sea is
bounded below, for each left-handed particle produced a left-handed antiparticle
appears. The reason for the anomaly is that, in quantum field theory, the
Fermi sea is unbounded below, so the appearance of a left-handed particle is
not necessarily accompanied by the appearance of a left-handed antiparticle.

Chiral anomaly as deriving from gauge invariant regular-
ization

Let us study the massless spinor electrodynamic theory defined by the following
Lagrangian:

L = ψ
(
i/∂ − e /A

)
ψ (1.35)

In an Hamiltonian context, the chiral current is defined as jµ5 (x) = ψγ5γµψ.
This definition does not survive quantization in that it is ill defined [25]; the
product of two operators at the same point of space is singular. In order to
remove the singularity, we smooth out this definition by going to the limit
ε→ 0 of the gauge invariant expression:

jµ5 (x, ε) = ψ
(
x+

ε

2

)
γ5γµe

ie
∫ x+ ε

2
x− ε

2
Aα(x′)dx′α

ψ
(
x− ε

2

)
(1.36)

For simplicity we will take the electron to be massless, so that when we differ-
entiate this expression, after using the equations of motion and retaining only
the first order term in ε we find:

∂µj
µ
5 (x, ε) = −iεαeψ

(
x+

ε

2

)
γ5γµψ

(
x− ε

2

)
Fαµ (1.37)

This is an exact expression, where we have taken the electromagnetic field to be
classical. Next step involves averaging this over the vacuum state; in order to do
this, we have to take the average of the Green function ψ

(
x+ ε

2

)
γ5γµψ

(
x− ε

2

)
for an electron in a given electromagnetic field over the vacuum state. If such a
field is constant, we can exclude the possibility of the appearance of bound levels
in the spectrum. We can then do this perturbatively to the first non vanishing
order in e; a sketch of the calculation follows.

Because of translational invariance, the above Green function can be written
as Gµ(ε) = 〈0|T

{
ψ (ε) γ5γµψ (0)

}
|0〉. We can find the differential equation

which Gµ has to satisfy; in a constant electromagnetic field Aµ(x) = Fµνxν
2 :

i/∂Gµ(ε) + e /A(ε)Gµ(ε) = iγ5γµδ4(ε) (1.38)

This can be solved perturbatively in e by the usual methods; another way is to
write directly the expression in momentum space for Gµ(p):

Gµ (p) = γ5γµ
i

/p+ e /A(p)
(1.39)
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The denominator of this expression can be expanded in e; after that, we need
to take the trace of the operator. The first term whose trace with γ5 does not
vanish is:

Tr

(
γ5γµ

i

/p

(
−ie /A (p)

) i
/p

)
(1.40)

The trace can now be computed by the usual means to obtain:

〈0| ∂µjµ5 |0〉 =
e2

4π2
FαµFβνε

λµβν ελε
α

ε2
(1.41)

In taking the limit for ε→ 0 we have to take an average over direction because
of spherical symmetry of space: the result is:

〈0| ∂µjµ5 |0〉 =
e2

16π2
FµνFαβε

µναβ (1.42)

Chiral anomaly from Feynman diagrams

Historically chiral anomaly was first discovered through its consequences on
the violation of Ward identities. (1.42), in fact, implies that some diagrams
in massless fermion quantum electrodynamics will violate the Ward-Takahashi
identity, even in the absence of an electromagnetic field. In fact, upon quan-
tization of the electromagnetic field, from (1.42) we see that the divergence of
the axial current is an operator capable of producing two photons. This implies
that the so called triangle diagram in the computation of the matrix element
〈0|T

{
jµ5 (x)jα(y)jβ(z)

}
|0〉 has a non vanishing divergence even in the absence

of an electromagnetic field. This was confirmed by explicit computation of the
corresponding Feynman diagram [17].

Figure 1.4: Triangle diagrams contributing to the matrix element
〈0|T

{
jµ5 (x)jα(y)jβ(z)

}
|0〉

To first order in e2 the matrix element above in momentum space corresponds
to the sum of the two Feynman diagrams in Figure 1.4; by the usual rules this
gives:

Tαµν = Tr

[∫
d4p

2π4

(
γ5γα

i

/p+ /q + /k
γν

i

/p+ /q
γµ
i

/p
+ γ5γα

i

/p+ /q + /k
γµ

i

/p+ /k
γν
i

/p

)]
(1.43)
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If we want to find how the conservation laws are modified in this simple theory,
we need to compute the three quantities kνTαµν , qµTαµν (which correspond to
the divergences of the vector currents jµ in momentum space) and (kα+qα)Tαµν
(which corresponds to the divergence of the axial current j5

µ in momentum
space). Let us give an example of how an integral of this form is computed.

By explicit substitution we find:

qµTαµν = i

∫
d4p

2π4
Tr

[
γ5γα

i

/p+ /q + /k
γν

(
i

/p
− i

/p+ /q

)
+ γ5γα

(
i

/p+ /k
− i

/p+ /q + /k

)
γν
i

/p

]
(1.44)

After evaluating traces this becomes:

qµTαµν = 4εαµνβ

∫
d4p

(2π)4

[
(pµ + qµ + kν)

(
pβ + kβ

)
(p+ q + k)

2
(p+ q)

2 − (pµ + kµ) pβ

(p+ k)
2
p2

]
(1.45)

The integrals are all linearly divergent; this means that they are not invariant
under a translation of the integration variable. The question arises as to how
we should choose the origin of the integration space to regularize the integral;
the answer is that we should act in such a way as to preserve the symmetries
of the classical theory. In particular, those symmetries which will be gauged
(which in this case are associated with the vector current) are required to be
conserved at the quantum level for the consistency of the theory; were they not
conserved, in fact, the theory would not be renormalizable anymore.

Let us first study what happens to the integral of a linearly divergent function
when we shift the integration variable:∫

d4p [f(p+ a)− f(p)] =

∫
d4p [∂µfa

µ + ...] =

∫
dΣµf(p)aµ (1.46)

where Σµ is a surface at infinity. In 4 dimensions we can then write:∫
d4p [f(p+ a)− f(p)] = 2iπ2aµ lim

P→∞
P 3f (P )

Pµ
P

(1.47)

We have implicitly rotated to Euclidean space to write the volume of the com-
pact hypersphere and then Wick rotated back to Minkowski space, which ex-
plains the origin of the i. For a linearly divergent integral the above limit is
finite.

Our previous reasoning implies that the question of wheter (1.45) vanishes
is ill posed, since it depends on our choice of the origin of the integration space.
We can then come back to our original definition (1.43) and generalize it to
compute Tαµν(a) where the integration variable is shifted by the 4-vector a.
The difference between the two definitions can be easily written down using
(1.47):

Tαµν(a)− Tαµν =
i

8π2
εαµνβa

β + {µ, k ↔ ν, q} (1.48)
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We have maintained that k and q must be exchanged because a is generally
dependent on k and q.

By explicitly computing Tαµν we can now find a such that the divergence of
the vector currents vanishes; we find:

aµ = α (kµ + qµ)− 1

2
(kµ − qµ) (1.49)

where α is undetermined.
If we now try to compute the divergence of the axial current we find that it

does not vanish and that it is equal to:

(kα + qα)Tαµν =
i

2π2
εµνασk

αqσ (1.50)

Importantly, when we gauge our theory, the vector currents can be substituted
by external photon lines, and we obtain once again (1.42).

The source of the anomaly can be traced back to the introduction of regu-
lators which are not explicitly chirally invariant. For example, we recall that
the Pauli-Villars regularization procedure requires the introduction of a ghost
particle with a mass which is then taken to be infinite after the renormaliza-
tion procedure; but the introduction of massive fermions explicitly spoils chiral
invariance.

Chiral anomaly from path integrals

The source of the anomaly is particularly clear in the path integrals viewpoint
[26]. We will deal with Euclidean path integrals, obtained after the substitution
t → it; thus the Dirac operator /D = /∂ + ie /A is hermitean and admits a set of
eigenfunctions φk with eigenvalues λk.

Under the transformation ψ′ = eiγ
5αψ, the classical action stays unchanged

because of the chiral invariance of the theory, while the integration measure

changes by a factor e2α
∫
d4xδ(x−x)Tr{γ5}. This factor is clearly ill defined, and

it needs to be regulated. We can substitute the integration over x and the trace
by a sum over all the eigenfunctions of the gauge covariant Dirac derivative and
insert a regulating function to obtain that the factor is eα

∫
d4xA(x), where A(x)

is the anomaly function defined by:

A(x) = 2
∑
k

(
φ∗kγ

5f

(
λ2
k

M2

)
φk

)
(1.51)

in the limit for the regularization scale M → ∞. As |k| → ∞ f must drop
smoothly from 1 to 0; since we are not interested in proving the independence

of the result on our choice, we will simply take f = e−
λ2
k

M2 = e−
/D2
k

M2 . After the
introduction of the regulating function, we can go back to the representation in

terms of integral over x and trace over spinor index. The operator /D
2

= (∂ −
ieA)2− 1

2eσµνF
µν appears in the exponent; we can now expand the exponential
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in terms of e; since the trace of γ5 is non zero when it is contracted with 4 γ, it
is clear that the first non vanishing contribution will appear from the term:

A(x) =
e2

4M2

(∫
d4xe−

∂2

M2

)
Tr
{
γ5σµνσαβ

}
FµνFαβ (1.52)

The integral over dx can be substituted by an integral over the momentum of
free particle wavefunctions, which are eigenfunctions of the operator ∂2; the
integral can then be done easily and, in the limit M →∞ one obtains:

A(x) = − e2

16π2
εµνρσFµνFρσ (1.53)

The existence of the anomaly function implies that the effective action will not
be invariant under a chiral transformation, and thus brings us back to (1.42).

All of the previous results have been derived in a one-loop approximation.
However, Adler and Bardeen [27] proved that the form of the anomaly is not
subject to higher order corrections. A simple way to see this is to note that the
integral of the left-hand side of (1.42) over all space gives the rate of change of
left-handed minus right-handed particles, which must be an integer; this implies
that both sides of the equation must change only by integer quantities.

Anomalies in the Standard Model

In non-abelian gauge theories the amplitude for the triangle diagrams which vi-
olate the Ward-Takahashi identities contains a factor Tr {Ta {Tb, Tc}}. Since in
the Standard Model left-handed particles couple differently to the SU(2) gener-
ators than right-handed particles, it might be expected that currents associated
to gauge fields might be anomalous. This would however create problems in the
quantization of the theory; luckily, in the Standard Model these currents turn
out not to be anomalous. We can prove the more general result that any theory
which can be deduced from spontaneous symmetry breaking in SO(10) (actu-
ally in SO(2n) with n 6= 3) has gauge currents which are free from anomaly
[17]. In fact, the generators in SO(10) brings into the anomaly a factor of
Tr {Jmn {Jik, Jst}}; but in SO(10) there is no invariant tensor with 6 indices,
so it follows that this factor is 0.

The reasoning above is valid, of course, only for the currents associated
to gauge fields, since we had to sum over all fermion representations. In the
Standard Model, the currents associated to baryon and lepton number turn out
to be anomalous:

∂µj
µ
B = −∂µjµL = 3

g2

32π2
εµναβW a

µνW
a
αβ (1.54)

where W a are the SU(2) gauge fields; the factor of 3 comes from the number
of different generations in the Standard Model.
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1.5 Instantons and topological processes

The anomalous violation of conservation laws suggests the possibility of the
existence of processes which explicitly violate the conservation of baryon and
lepton numbers. It is clear that no such process will be observed at any order
of the perturbative treatment given by Feynman diagrams; by its very nature,
in fact, perturbation theory studies small fluctuations around a vacuum state
(which we have taken to be the state with no particles in the Fock space). Since
our classical theory preserves chiral symmetry, the Feynman rules will always
conserve baryon and lepton numbers.

Therefore, we expect the effects of anomaly to be present only on a non
perturbative level. We already know that perturbation theory fails in dealing
with tunneling effects between different vacua; a specific example of this has
been given in the case of spontaneous symmetry breaking. In that case, we
restricted ourselves to a specific configuration which spontaneously breaks the
symmetry of the Lagrangian and neglected the possible transitions between
different such configurations. Of course this cannot be done in the context of
perturbation theory; the ideal means of dealing with this problem is the WKB
approximation.

Tunneling probabilities in quantum field theory

As was derived for the first time from Landau [28], the transition probability be-
tween two states separated by an energy barrier like in Figure 1.5 is proportional
to the exponential of the classical action over the complex trajectories7 which
connect the two states. The factors which appear together with the exponential
can be derived in a simpler way in a path integral context.

The tunneling amplitude is given by the expression:

K [φb, φa, t] =

∫
DφeiS[φ] (1.55)

where φ is the set of fields present in our theory, S [φ] is the action and the
integral is taken over the paths which connect the two classical configurations
of interest φa and φb over the time t.

We expect the integral to be dominated by paths which make the expo-
nent stationary; if the two extremal configurations are not classically connected
(which is the case of interest since we want to study tunneling) then no such
path exist. It is possible, however, to find configurations of fields which extrem-
ize the exponent for complex values of t. Such configurations give the most
important contributions to the integral; these contributions are, as is easily
seen, exponentially damped (due to the imaginary time in (1.55)) by a factor
e−S0 , where S0 is the action evaluated over these classical paths. We can now
evaluate the accompanying factors by explicitly doing the integrals over small

7There are no real trajectories since transitions between the two states are classically
prohibited.
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fluctuations around these classical solutions; this is done in detail for a simple
quantum mechanical case, for example, in [29]. The most important conclusion
which we draw is that tunneling effects can happen in quantum field theory and
that their amplitude is suppressed by a factor ∼ e−S0 .

Figure 1.5: Model potential for barrier penetration in a scalar field theory

We will also need an estimate of the rate of such processes at finite temper-
atures. A first complication which we encounter is the definition of the decay
rate of a metastable state at finite temperature. Suppose we have two sets of
field configurations separated by a potential barrier; a model example which can
be used is the case of a single scalar field with a potential energy having two
minima which can be taken to be different from one another like in Figure 1.5.
We can then define the probability that, after a time t, the field tunnels from
one side of the potential barrier to the other as:∫

DφaP [φa]

∫
Dφb

∣∣〈φb| e−iHt |φa〉∣∣2 (1.56)

In (1.56) the initial configuration φa is thermally averaged over all static con-
figurations belonging to the side of interest of the potential barrier, while the
final configuration φb is summed over all static configurations belonging to the
other side of the barrier. P [φa] is chosen to be the thermal distribution function
∼ e−βH projected over the side of interest of the barrier, since we are interested
in the decay rate of states belonging to one minimum of the potential. This
expression is expected to depend on time as ∼ (1 − e−Γt) ∼ Γt where Γ is the
decay rate and we have expanded for t� Γ−1.

The expression (1.56) can be further reduced to the form:

1

Z

∫
Dφa

∫
Dφb 〈φb| e−iHt |φa〉 〈φa| e−βH |φa〉 〈φa| eiHt |φb〉 (1.57)
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where Z is the partition function restricted to the first side of the barrier.
The real time matrix elements are easily calculated at zero temperature; they
collectively give, for t� Γ−1, a factor:

D [φa] =

∫
Dφbe−2S0[φb,φa] (1.58)

where S0 is defined as above and φb is integrated over all configurations on the
final side of the barrier. The integration will be dominated by a stationary point
φb, which is basically the point on the final side of the barrier with the same

potential energy as φa, so that we can write D [φa] ∼ e−S[φa] where S [φa] =
S0

[
φb, φa

]
.

The thermal matrix element can be rewritten as a path integral:∫
Dφe−

∫ β
0
duH[φ] (1.59)

where φ are dynamical paths in φ space which brings configuration φa back to
itself at ”time” β. For high temperatures, a well known approximation [30] is
to compute only the path which stays fixed at configuration φa and fluctuations
around it; then the integral will give a factor e−βV [φa], where V is the potential
energy of the Hamiltonian.

We will finally have to integrate the expression:∫
Dφae−βV [φa]e−2S0[φa] (1.60)

over configurations φa belonging to the initial side of the barrier. The integration
will be dominated by static configurations which extremize the integral; for
high temperatures, the action S0[φa] is clearly minimized by points near the
maximum of the potential barrier, where S0[φa] ∼ 0. This implies that the
thermal decay rate is suppressed by a factor ∼ e−βV [Φ], where Φ is the unstable
static configuration corresponding to the maximum of the potential barrier.

Instantons and sphalerons in gauge field theory

We will now apply the general theory developed until now to gauge field theory.
For gauge fields the action, after rescaling A→ A

g , is:

S = − 1

2g2

∫
d4xF aµνF

aµν (1.61)

We look for stationary points of this action; in particular, we will look for
classical dynamical solutions to describe tunneling at zero temperature and for
classical static unstable solutions to describe tunneling at high temperatures.
Let us start with the former, which are known in literature as instantons [29].

The solutions of interest are to be found among those of finite action; in fact,
WKB approximation around solutions of infinite action gives vanishing contri-
bution. This implies that at spatial infinity, for the initial and final time, the
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solution should approach a pure gauge; we therefore need to solve the classical
field equations with boundary conditions corresponding to a pure gauge field to
find the initial and final configuration, and then find a dynamical solution which
connect them. An objection might be raised that if we try to solve the gauge
invariant field equations with such boundary condition we might find only solu-
tions which are everywhere gauge equivalent to zero field. The solution of the
paradox lies in the fact that the gauge transformation needs to be singular only
at spatial infinity, while it can have singularities in the interior of space. Two
configurations which are related at spatial infinity by a gauge transformation
which is regular everywhere are said to be homotopically equivalent (since they
admit the same topological mapping of the gauge group to the spatial bound-
ary); we can then order the static gauge field configurations into equivalence
classes. The tunneling solution will now connect two static field configurations
belonging to two different classes. The action for the field can be rewritten in
the form:

S = − 1

4g2

∫
d4x

[(
F aµν − F̃ aµν

)2

+ 2F aµν F̃
aµν

]
(1.62)

where:

F̃ aµν =
1

2
εµναβF

aαβ (1.63)

The last term, which is identical in form to the so called Chern-Simons term,
consists of a pure divergence:

F aµν F̃
aµν = ∂µK

µ (1.64)

where:

Kµ = 2εµναβA
aν

(
∂αAaβ − i

3
fabcAbαAcβ

)
(1.65)

where fabc are the antihermitean structure constants defined by:[
ta, tb

]
= fabctc (1.66)

This last term does not contribute to the dynamical equations of motion; the
first term is clearly minimized by the choice:

F aµν = F̃ aµν (1.67)

We are interested in solutions for imaginary time; this might create some am-
biguities in the definition of Aa0 , which should be chosen to be imaginary. We
can however avoid this subtlety by choosing a gauge in which Aa0 vanishes. The
tunneling amplitude now is suppressed by a factor e−S0 where:

S0 =
1

2g2

∫
d4xF aµν F̃

aµν =
1

2g2

∫
dΣµKµ (1.68)
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Since we are studying tunneling solutions, the integration surface can be chosen
to consist of the union of two 3-surfaces at t→ ±∞, so that the previous integral
will be written as the difference of two integrals:

Q± =
1

2g2

∫
dΣ4
±K4 (1.69)

where the fourth component is identified with Euclidean time.
Since the gauge field vanishes at spatial infinity only the second term of

(1.65) contributes; furthermore, the fact that S0 depends on Aa evaluated at
infinity, where it is a pure gauge, implies that the result will depend only on
the homotopic class to which the classical solution belongs. By substituting the
gauge form Abµ = ∂µθ

b(x), (1.69) becomes:

− i

3g2

∫
d3xεijkf

abc∂iθ
a∂jθ

b∂kθ
c (1.70)

For SU(2) the map xi → θa can be regarded as a topological mapping of real
space onto the group SU(2); we can also substitute the structure constants for
SU(2):

+
2

3g2

∫
d3xεijkε

abc∂iθ
a∂jθ

b∂kθ
c (1.71)

By using the properties of the Levi-Civita symbols and recognizing the Jacobian
determinant of the above mentioned map we can rewrite the integral in the form:

− 4

g2

∫
d3θ (1.72)

This integral is now the volume in θ space covered by the topological map. For
the simplest case that θa is exactly proportional to xa√

xaxa
, which corresponds to

the identity mapping of the physical 3-sphere with the SU(2) group, the integral
will then give simply the solid angle in 4 dimensions and we find:

Q =
8π2

g2
(1.73)

Members of different homotopic classes, as mentioned above, possess singu-
larities of different orders; this means that we can compose the simple gauge
transformation given above to obtain all other homotopic classes. The result is
that for the map obtained by the composition of n± simple map of the form
given above:

Q± =
8π2n±
g2

(1.74)

The integer number n± is known as the winding number of the spatial configura-
tion at t→ ±∞; it measures the number of times the angles θa, in their mapping
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in physical space, are wrapped around the origin. The tunneling processes we
are describing, therefore, happens between spaces with different winding num-

bers, and it is suppressed by a factor ∼ e−
8π2ν
g2 , where ν = n+ − n−.

In order to understand the physical meaning of the processes whose exis-
tence has now been proven, we observe that, apart from constant factors, the
Euclidean action which we have calculated appears in the anomaly expression
(1.54); by integrating that equation over all spacetime in the same way as we
did before we find that the initial and final state of the tunneling process, which
have winding numbers differing by an integer ν, possess baryon and lepton
numbers which differ by 3ν and −3ν respectively8. The conclusion we draw
is that there exist in the Standard Model baryon and lepton number violating
processes, which are, however, strongly suppressed at zero temperature.

At high temperatures, by the general theory introduced above, we need to
identify static unstable configurations of gauge fields; such configurations are
generally known as sphalerons [31]. In the case of massless gauge fields they
can take arbitrarily low values of energy; a simple way of proving this is to note
that the gauge field Hamiltonian in 3 dimensions:

H [Aµ] = −
∫
d3x

1

2g2
FijF

ij (1.75)

under the transformation A → λA(λx), E → λE. For any given configuration
we can then choose λ in such a way as to lower the energy; this means that the
height of the energy barrier vanishes. As a consequence, in pure gauge theory
thermal tunneling is not suppressed at all.

In the Standard Model, however, gauge fields become massive through the
Higgs mechanism; it is clear, therefore, that the sphaleron solution should be
looked for in the context of a gauge field endowed with a Higgs field.

The existence of these solutions has been proven in [32]; by computing the
energy of these configurations we can find the thermal suppressing factor above
defined. The results of this calculation have been used to find [33] that at
temperatures above about 300 GeV the rate of these processes is comparable
with the rate of expansion of the Universe (this will be discussed in more detail
in Chapter 2) so that the sphaleron reactions are at equilibrium.

8As an aside we notice that the fact that the two members of this equality are both integers
implies that this equation holds to all orders of perturbation theory, which constitutes the so
called non renormalization of the anomaly.
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Chapter 2

Thermal history of the
Universe and Baryogenesis

2.1 Friedmann-Robertson-Walker metric

The description of the Universe on a large scale, in a general relativistic context,
requires the establishment of a spacetime metric; the connection between this
and the matter content is specified by the field equations of general relativity.
In order to solve them, we need to introduce some assumptions on the geometry
of spacetime.

The metric which will be assumed to describe our Universe is the Friedmann-
Robertson-Walker metric [34]. This is obtained under the assumption of spatial
homogeneity and isotropy of the Universe. We can obtain the most general met-
ric satisfying these requirements by the imposition of two equivalent constraints;
either we require the spatial curvature, which is the trace of the 3-dimensional
Ricci tensor, to be constant, or we require that the spatial metric admits 6
Killing vectors, corresponding to 3 translations and 3 rotations. By imposing
either of these constraints1, one obtains the following form for the 3-dimensional
metric:

dl2 =
dr2

1− kr2
+ r2dΩ2 (2.1)

where dΩ2 is the angular part of the metric in polar coordinates and k is a
parameter which can take the values +1, 0 and −1. Turning to the spacetime
metric, we see that, in order to preserve homogeneity and isotropy at each
moment of time, we can choose a synchronous system of coordinates in which:

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(2.2)

1There is another possibility which consists in explicitly imposing the geometrical con-
straint of homogeneity and isotropy on the length of segments in this spacetime; this proof
can be found in [35].
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In (2.2) a(t) is the time dependent scale function, which sets the scale of
distances in the Universe; its time evolution is specified by the Einstein field
equations (which in this context are known as Friedmann equations):

H2(t) +
k

a2
=

8πG

3
ρ,

ä

a
= −4πG

3
(ρ+ 3p) (2.3)

where H = ȧ
a is the Hubble parameter and ρ and p are the matter density

and pressure (which by homogeneity are constant everywhere). They include
contributions not only from ordinary matter but also from vacuum energy; this
might lead to a term in the Friedmann equations known as the cosmological
constant term (the name derives from the fact that it can be obtained from the
addition to the Einstein equations of a term Λgµν).

In order to solve the Friedmann equations, one has to specify an equation
of state, which requires a specification of the matter content of the Universe.
In general each of the components of the total energy density of the Universe
possesses a specific equation of state; the usual simplifying assumption is made
that non-relativistic particles behave as dust with zero pressure2 and relativistic
particles behave as zero mass particles with p = ρ

3 . The cosmological constant
term which was mentioned before has, as it can be clearly seen, an equation of
state of the form p = −ρ.

The role played by each of the above components (which we will refer to as
matter, radiation and cosmological constant components respectively) can be
conveniently represented through the dimensionless parameter:

Ωj =
ρj
ρc

(2.4)

where:

ρc =
3H2(t)

8πG
(2.5)

is the so called critical density. Let us also introduce a curvature density and
pressure:

ρk = − 3k

8πGa2
, pk = −ρ

3
(2.6)

chosen in such a way that the Friedmann equations can be rewritten as:∑
j

Ωj = 1,
ä

a
= −4πG

3

∑
j

(ρj + 3pj) (2.7)

The second of Friedmann equations can be rewritten as a statement on the
evolution of density with time; it can be easily proved that for dust, radiation,

2It can be proved that pressure is smaller than energy density by a factor ∼ m
T

where m
is the mass of the particle and T is the temperature of the species.
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cosmological constant and curvature we have respectively:

ρdust ∼
1

a3
, ρrad ∼

1

a4
, ρΛ ∼ const., ρk ∼

1

a2
(2.8)

Since observational data show that a is increasing with time, we see that
the matter and radiation contribution decreases with time more rapidly than
the Λ one; at the present time ΩΛ ∼ 0.7 and Ωdust ∼ 0.3, while radiation
gives a negligible contribution (Ωrad ∼ 10−5). Going backward in time we see
that the cosmological constant contribution was less and less important while
radiation and matter gave increasing contributions until an equivalence point at
which these two components gave exactly the same contribution. Before that
moment, the Universe was dominated by radiation and massless particles.

The curvature contribution is today estimated to be extremely small; more-
over, it can be proved that, under the assumption of decelerated expansion,
k = 0 is an unstable fixed point of the evolution of Friedmann equations. This
implies that either k is exactly 0 or that its effect had to be extremely small at
the beginning of the Universe. This so called flatness problem has been solved
by inflation, according to which the curvature contribution to the energy den-
sity of the Universe was strongly suppressed by an initial period of accelerated
expansion; the mathematical details are of no interest here. We will simply note
that, in our discussion of baryogenesis, we can put k = 0 in the Friedmann equa-
tions, since its contribution is unimportant at the time of baryogenesis (which
is successive to inflation).

2.2 Thermodynamics in the expanding Universe

The next two sections will be devoted to a brief exposition of thermodynamics
and kinetic theory in the expanding Universe. We will begin with equilibrium
thermodynamics [35].

A given species of particles in the Universe will be characterized by its num-
ber density nj , its energy density ρj , its pressure pj , its chemical potential µj ,
its temperature Tj and its entropy density sj (by the capital letters we will de-
note the total quantity, which is the density multiplied by the volume because
of homogeneity). A fundamental link between these two quantities is furnished
by the first principle of thermodynamics:

dUj = TjdSj − pjdV + µjdNj (2.9)

By substituting the total quantities in terms of their densities we find:

dV (ρj − Tjsj + pj − µjnj) + V (dρj − Tjdsj − µjdnj) = 0 (2.10)

Since the variations of extensive and intensive quantities are independent, we
can simply set to 0 the coefficient of dV , obtaining:

sj =
ρj + pj − µjnj

Tj
(2.11)
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The first principle then reads simply:

dρj = Tjdsj + µjdnj (2.12)

We have talked until now about the temperature of the species without caring
much about how this thermal equilibrium is established. As long as interaction
rates are comparable to the rate of expansion of the Universe we expect the
jth species to stay in equilibrium with the other species at a fixed temperature
which we might call the temperature of the bath which constitutes the Universe;
when interaction rates become negligible with respect to the rate of expansion
of the Universe, we can simply consider the species at equilibrium at a time
dependent temperature which is determined only by the Universe expansion3.
The intermediate phase cannot of course be described in an equilibrium context.

To further specify the evolution we need to relate the pressure and the num-
ber density of the species with its energy density; this requires of course a specific
statistical model. Thus we will recall some basic facts about thermodynamic
distributions.

Relativistic quantum theory shows that, in order to grant the existence of a
stable ground state, particles with integer spin should be quantized with com-
mutation rules between creation and annihilation operators while particles with
half-integer spin should be quantized with anticommutation rules; this is gen-
erally known as the spin-statistics connection. For non interacting particles we
can define energy levels; then the spin-statistics connection implies that each
level can be occupied by any number of particles in the bosonic case and by at
most a single particle in the fermionic case. The expected number of particles
for each energetic level εj is then given in the two cases by:

Nj =
1

eβ(εj−µ) ± 1
(2.13)

where the + is for fermions and the − for bosons. We can now sum over all
states to obtain the mean number density and mean energy density; in the sum
over energetic states we can pass to the continuum limit by introducing the
integral: ∫

d3p

(2π)3
gj (2.14)

where gj is the multiplicity factor which takes into account the discrete number
of states of each species (for example, for photons gj = 2, corresponding to
the two orthogonal polarization states). Then we can write the expressions

3This is rigorously true for relativistic species, as can be proven through the Boltzmann
equation introduced below; for non relativistic species this constitutes only an approximate
solution.
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corresponding to the number density, energy density and pressure:

nj =

∫
d3p

(2π)3
gj

1

eβ(ε(p)−µ) ± 1
(2.15)

ρj =

∫
d3p

(2π)3
gj

1

eβ(ε(p)−µ) ± 1
ε(p) (2.16)

pj =
1

3

∫
d3p

(2π)3
gj

1

eβ(ε(p)−µ) ± 1

p2

ε(p)
(2.17)

where the expression for the pressure has been derived by standard kinetic
arguments; it is the flux of impulse (that is, the impulse p multiplied by the ve-
locity of the particle p

E ) with a factor 1
3 coming from an average over directions.

For high enough temperature both Bose-Einstein and Fermi-Dirac distribu-
tions behave as the Maxwell-Boltzmann distribution; in this case the integrals
can be written in terms of modified Bessel functions. The condition of appli-
cability is that the chemical potential is much smaller than the typical energy
of the occupied levels; since such energy is of order ∼ Tj , this requires that
µj � Tj .

For the particle number density we have:

nj =
gjM

2
j Tj

2π2
K2

(
Mj

Tj

)
(2.18)

where M is the mass of the particle and K2(z) is the modified Bessel function
of the second kind.

It will also be necessary to have an expression for the jth species contribution
to the total pressure, entropy and energy density of the Universe. We first note
that non relativistic particles give a contribution which is exponentially smaller

(by the Boltzmann factor e
−
Mj
Tj ) than relativistic ones, so that we can consider

only the latter. In the relativistic limit the integrals can be done exactly; we
will also use the approximation that Tj � µj , which is true at the temperatures
of interest. The results are:

nj =
ζ(3)

π2
gjT

3, ρj =
π2

30
gjT

4
j , pj =

ρj
3

(2.19)

for bosons and:

nj =
3ζ(3)

4π2
gjT

3, ρj =
7

8

π2

30
gjT

4
j , pj =

ρj
3

(2.20)

for fermions.
The total entropy density and the total energy density, then, through (2.11),

can be written as:

ρ =
π2

30
g∗T 4, s =

2π2

45
g∗ST

3 (2.21)
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where T is the mean temperature of the thermal bath of the Universe and g∗

and g∗S are effective degrees of freedom defined by:

g∗ =
∑
bosons

gj

(
Tj
T

)4

+
7

8

∑
fermions

gj

(
Tj
T

)4

(2.22)

and:

g∗S =
∑
bosons

gj

(
Tj
T

)3

+
7

8

∑
fermions

gj

(
Tj
T

)3

(2.23)

These factors will depend on whether the jth species is at equilibrium with the
thermal bath, and thus will be strongly dependent on the particular moment of
the evolution of the Universe which we are dealing with.

As long as the chemical potential of the distribution vanishes, no asymmetry
is produced in the species; since we will be interested in describing the generation
of asymmetry in various species, we will now derive a simple relation between
the chemical potential and the asymmetry of a species for massless particles
(since this is the regime which will be of interest to us) and for µ� T .

The starting point is the observation that photons have vanishing chemical
potential; this can be easily derived from equilibrium conditions imposed on
the reaction e → e + γ. Since particles and antiparticles can annihilate into a
photon, it follows that at equilibrium, for each species X, µX = −µX (if these
particles do not annihilate electromagnetically, the same result can be derived
from their annihilation reaction into other gauge bosons). The form (2.15) of
the distribution implies:

nX − nX = 2g

∫
d3p

(2π)3

eβp sinhβµ

e2βp ± 2eβp coshβµ+ 1
(2.24)

By expanding with respect to βµ we deduce:

nX − nX =
gµT 2

3
(2.25)

for bosons and:

nX − nX =
gµT 2

6
(2.26)

for fermions. If we define the asymmetry of a given species as X =
nX−nX
nX

, to
first order in µ

T we find:

X =
π2µ

3ζ(3)T
(2.27)

for bosons and:

X =
2π2µ

9ζ(3)T
(2.28)

for fermions. The use of this relations is not much in numerical computation;
they instead serve to show us that, at thermal equilibrium, asymmetries obey
the same relations as chemical potentials.
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2.3 Kinetic theory in the expanding Universe

Kinetic theory is based upon the introduction of a distribution function in the
particles phase space. Rigorously speaking such a distribution function will
depend over the spacetime coordinates and momenta of each particle. It is clear
that no simplification is obtained in dealing with a function of 8N variables
(N being the number of particles) instead of explicitly solving the evolution
equations for each such particle.

The usual approximation consists then in integrating this function over the
coordinates of all particles but one, and obtaining in this way a one-particle
distribution function f(xµ, pν). This inevitably leads to a loss of information
about correlations between particles; in particular, such an approximation will
force us to expose a derivation of the evolution equations for the distribution
function f which can be regarded as only heuristic in nature and not completely
rigorous.

Before deriving such an evolution equation (which is known in literature
as Boltzmann equation) we have to deal with the subtleties introduced by the
spacetime metric [36]. Because of homogeneity and isotropy f can only depend
on time and on the energy of the particle. If the species is not subject to
any interaction, then its distribution function should admit solutions describing
motion along geodesics.

The energy and the three-momentum of the particle are defined as the com-
ponents of the covariant quadrimomentum:

E =
dt

dτ
, pi = a(t)

dxi

dτ
(2.29)

τ being the proper time of the particle. The geodesic equation for the 0th
component of the 4-velocity gives:

dE

dτ
= −Hp2 (2.30)

It follows that the kinetic evolution for the distribution function of free falling
particles is:

E
∂f

∂t
−Hp2 ∂f

∂E
= 0 (2.31)

In the presence of interactions, the right-hand side of this equation is modified
by the insertion of an effective collision term which gives the rate of interaction
of the particles 4:

E
∂f

∂t
−Hp2 ∂f

∂E
= St(f) (2.32)

4This is the less rigorous part of the proof, since in a rigorous treatment this term is derived
from an integration of the multiparticle distribution functions [37]
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Since we are interested only in the total number density of the species, after
dividing out by a factor of E we can integrate over the phase space factor to
obtain the number density:

n(t) = g

∫
d3p

(2π)3
f(E, t) (2.33)

The second term in the left-hand side of (2.32) can be integrated by parts to
obtain the Boltzmann equation:

dn

dt
+ 3Hn =

(
dn

dt

)
coll

(2.34)

The collisional term for a specific process ψ + a+ b+ ... → c+ d+ ... where ψ
is the species under consideration reads:(

dnψ
dt

)
coll

= −
∫
gψ

d3pψ
(2π)32Eψ

ga
d3pa

(2π)32Ea
...gc

d3pc
(2π)32Ec

...(2π)4δ4(pψ + pa + ...− pc − ...)[
|M|2ψ+...→c+...fψ...(1± fc)...− |M|

2
c+...→ψ+...fc...(1± fψ)...

]
(2.35)

where the sign + is for bosons and − for fermions. The statistics blocking or
enhancing factors can usually be set to 1 since the distribution functions are
generally much smaller than 1 and so can be neglected.

The meaning of the second term in (2.34) becomes evident when we try to
compute the rate of change of the total number N = nV ; since dV

dt = 3HV we
find that:

dN

dt
= V

(
dn

dt

)
coll

(2.36)

Thus the second term accounts for the dilution of the species due to the expan-
sion of the Universe.

We can simplify the equations absorbing this term by using, instead of n,
a quantity which does not change with the expansion; since total entropy S is
conserved as well, the ratio Y = n

s will not suffer by the dilution effect. In fact,
(2.36) becomes:

s
dY

dt
=

(
dn

dt

)
coll

(2.37)

It is customary to use as a parameter the temperature of the Universe instead
of the cosmic time. Since the epoch of the Universe which we are interested in
is the radiation dominated one, the temperature of the thermal bath will vary
with time in such a way that the radiation contribution to entropy will be nearly
constant; since such contribution depends on temperature as ∼ T 3a3, where the
factor of a3 comes from the total volume of the Universe, it follows that T grows

37



as ∼ 1
a . In the same radiation dominated period, Friedmann equations can be

solved explicitly to give:
a(t) ∼ t 1

2 (2.38)

It follows:

t ∼ 1

T 2
(2.39)

We can then use as a variable:

z =
M

T
(2.40)

where M is any convenient mass scale chosen to adimensionalize z. This implies
t = αz2; from (2.38) it then follows:

H(z) =
1

2αz2
(2.41)

We can now substitute into the Boltzmann equation to obtain the following
form:

s(z)H(z)z
dY

dz
=

(
dn

dt

)
coll

(2.42)

The collisional term is typically evaluated by assuming for the momentum
part of the distribution function an equilibrium form. Let us give an exam-
ple of the consequences of such an assumption for the calculation of the term
corresponding to a decay [38]; such a term has the form:(

dnψ
dt

)
coll

= −
∫

d3pψ
(2π)32Eψ

d3pa
(2π)32Ea

d3pb
(2π)32Eb

(fψ(pψ)− fa(pa)fb(pb))

|Mψ→a+b|2(2π)4δ4(pψ − pa − pb)
(2.43)

where we have set the blocking or enhancing factors to 1 because of our assump-
tion about small occupation numbers.

Upon recognizing in (2.43) the expression for the energy dependent decay
rate ΓD(Eψ), which is related to the decay rate in the COM frame by a Lorentz
factor ΓD(Eψ) = ΓD

mψ
Eψ

, we rewrite it as:(
dnψ
dt

)
coll

= −
∫

d3pψ
(2π)3Eψ

(fψ(pψ)− fa(pa)fb(pb))ΓDmψ (2.44)

We will assume that, although chemical equilibrium is not maintained (other-
wise we would not need the kinetic treatment), kinetic equilibrium is instead
maintained through collisions; this implies that the form of the distribution
function is fψ(pψ) = e−βEψ

nψ
nψeq

where nψeq is given in (2.18). The assump-

tion of kinetic equilibrium allows us the use of a single temperature for all the
species. After using the equality Eψ = Ea + Eb we find:(

dnψ
dt

)
coll

= −
∫

d3pψ
(2π)3Eψ

e−βEψΓDmψ

(
nψ
nψeq

− na
naeq

nb
nbeq

)
(2.45)
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The integral over Eψ can now be explicitly done to give:(
dnψ
dt

)
coll

= −γD
(
nψ
nψeq

− na
naeq

nb
nbeq

)
(2.46)

where:

γD = nψeq
K1

(mψ
T

)
K2

(mψ
T

)ΓD (2.47)

Analogous calculations can be performed for the case of scattering of two parti-
cles into two particles [39]; we obtain the result that, in the process ψ+c→ a+b:(

dnψ
dt

)
coll

= −γS
(
nψ
nψeq

nc
nceq

− na
naeq

nb
nbeq

)
(2.48)

where:

γS =
T

32π4

∫ +∞

smin

dss3/2λ

(
1,
M2
ψ

s
,
M2
c

s

)
σ(s)K1

(√
s

T

)
(2.49)

where s = (pψ + pc)
2 and λ(a, b, c) = (a− b− c)2 − 4bc.

Since in this form of the kinetic equation only ratios of the form n
neq

appear,

we can substitute them by the form Y
Yeq

in (2.42).

An interesting problem is the deduction of solutions to the Boltzmann equa-
tion in the case that the collisional integral vanishes; we will in fact see in the
following section that for most of the history of the Universe particles are well
described by this very condition.

After the constraint is imposed, (2.32) can be cast into the form:

∂f(ap, t)

∂t
= 0 (2.50)

For massless particles, whose energy E coincides with p, a simple solution
exists which at any given instant takes the equilibrium form with the energy
multiplied by a factor of a; thus, for example, the Bose-Einstein or Fermi-Dirac
distribution will become:

f(p, t) =
1

e
β(t0)p

a(t)
a(t0)

−β(t0)µ ± 1
(2.51)

which is the same result we would have obtained by taking a standard distribu-
tion with a redshifted temperature and chemical potential, both decreasing as
∼ 1

a ; another way of finding it would be to note that the entropy density grows
as s ∼ T 3, and, since sa3 should be constant in an adiabatic expansion, T ∼ 1

a .
For massive particles, in general, no solution exists which depends on the

energy alone; in fact, E =
√
p2 +m2 cannot be reduced to a function of pa

alone. The physical reason for this lies in the fact that a mass introduces a time
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independent length scale ∼ 1
m

5; if an equilibrium solution existed, this length
would have to increase together with the expansion of the Universe. If m� T
it is still possible to find an approximate solution by expanding the square root;
the Bose-Einstein and Fermi-Dirac distribution will become, for example:

f(p, t) =
1

e
β(t0)m+β(t0)

p2a2(t)

2ma2(t0)
−β(t0)µ ± 1

(2.52)

where t0 is the instant at which free expansion begins. This case is analogous
to the previous, but with a temperature which decreases as ∼ 1

a2 .

2.4 Thermal history of the Universe

In the last section we saw that it is possible to parametrize the evolution of the
Universe using temperature instead of time; the relationship between the two
was schematically derived in the case of a radiation-dominated Universe. This
section will be devoted to a qualitative description of the different phases of the
early Universe.

We will first discuss the interplay between the two competing effects of ex-
pansion, which tends to pull particles out of equilibrium, and interactions, which
tend to maintain equilibrium. When the interaction rate is dominant over ex-
pansion (that is, Γ� H, Γ being the interaction rate) the Boltzmann equations
requires that the collisional terms are nullified by the distribution functions; if
this were not true, the time derivative of the distribution function would be
extremely high (due to the magnitude of the collisional term) so that any devia-
tion from equilibrium is at this stage nearly immediately cancelled. This implies
that at equilibrium particles are described by the equilibrium distributions of
Section 2.2 with a temperature which is equal for all species at equilibrium and
which depends on time in such a way as to make the total entropy of the Uni-
verse constant; because of the large quantity of massless particles present, this
generally means at all temperatures of interest that T ∼ 1

a . It is important to
note that the distribution function generally differ from those derived at the
end of last section since it is forced to follow the evolution of the temperature
of the thermal bath, which can be different from its evolution in free expan-
sion. Another fundamental point is that massive particles are suppressed by a
factor ∼ e−β(m−µ); this implies that, unless they develop a significant chemical
potential6, at equilibrium massive particles are negligible.

When the expansion rate is dominant (Γ� H) the collision term is negligi-
ble; in this case the solutions become those derived at the end of last section.
The evolution of each species, therefore, is characterized by two fundamental
moments; the decoupling time, at which H ∼ Γ, and the time at which it
becomes non relativistic, when T ∼M , M being the mass of the particle.

5In a quantum context this length coincides with the minimum uncertainty on the particle
position, that is, its localization length; under this scale pair production makes it impossible
to localize the particle.

6This can typically happen when they are protected by a particular symmetry.
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If the particle becomes massive (T ∼M) before decoupling, then, as we have
seen, its concentration at the time of decoupling will be negligible unless it has
developed a chemical potential which protects it; this is, for example, the case
of baryons, whose total number at sufficiently low temperature (T � 300 GeV )
must be conserved because of the absence of baryon number violating processes.
If decoupling happens at a time at which T ∼ M , it is possible for the species
to become ”freezed out” at an equilibrium value of na3.

We willl now briefly sketch the most important events in the thermal history
of the Universe [40]:

• at a temperature T ∼ 100 GeV the electroweak phase transition breaks
the symmetry group to the standard SU(3) × SU(2) × U(1) by giving
an expectation value to the Higgs; at this temperature all particles are
massless and coupled to the thermal bath. At this time there is already a
non vanishing baryon number density nB , which, because of conservation
of baryon number7, decreases exactly as nB ∼ 1

a3 ;

• at T ∼ 150 MeV quark confinement appears; before this moment quarks
and gluons were free, while at this temperature they become confined into
bound states of hadrons;

• at T ∼ 1 MeV neutrinos are the first to decouple from equilibrium; in the
instantaneous decoupling approximation, they simply start a free expan-
sion with Tν ∼ 1

a3 and with an initial temperature equal to that of the
thermal bath;

• at T ∼ 500 keV electrons and positron annihilate and become non rela-
tivistic; this is the main reason for neutrino temperature being different
from that of the thermal bath. In fact, were it not for e+ − e− annihila-
tion, both temperatures would decrease with the same law; instead, pair
annihilation into photons causes a ”heating” of the photon temperature
which in this phase does not decrease exactly as ∼ 1

a ;

• at T ∼ 100 keV nucleons have decoupled from the thermal bath and start
the chain of nuclear reactions leading to Big Bang Nucleosynthesis; after
primordial nucleosynthesis has happened, about 75% of baryonic matter
is in the form of protons, 25% in the form of 4He and a negligible part
composing heavier nuclei;

• at T ∼ 0, 75 eV Ωmatter = Ωrad; from now on matter will dominate over
radiation;

• at T ∼ 0, 25 eV hydrogen atoms form (this goes under the name of recom-
bination); matter is now nearly completely in the form of neutral atoms,
so that photons decouple, starting to form the Cosmic Microwave Back-
ground.

7In the absence of sphaleron and GUT interactions.
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The present temperature is about T ∼ 0, 24 meV and the Universe is dominated
by dark energy, as evidenced by the accelerated expansion revealed from analysis
of Type Ia Supernovae.

The processes we will be mostly interested in all happen at a temperature
above 100 GeV , at the time of the formation of a non vanishing baryon number.
Because of the behavior nB ∼ 1

a3 , we can say that, apart from a correction due
to e+−e− annihilation, the ratio η = nB

nγ
(nγ being the photon number density)

is nearly constant during all the subsequent evolution.
One might suppose that at temperatures above 100 GeV all Standard Model

interactions are always at equilibrium; this is actually not true, due to the fact
that the species are massless. As a consequence, while the Hubble constant
grows as ∼ T 2, the decay rate by dimensional analysis has to grow as ∼ T ;
therefore there will be a maximum temperature above which the reactions are
out of equilibrium. We will be mostly interested in the regime 108 GeV ≤ T ≤
1012 GeV ; the reactions which are already at equilibrium at this time will be
detailed in a later section.

2.5 Baryogenesis

A major problem in cosmology is the explanation of the cosmic asymmetry
between matter and antimatter. On a cosmic scale no macroscopic concentra-
tions of antimatter are expected; in fact, boundaries between regions composed
of matter and antimatter would produce gamma ray emissions which are not
observed.

On the other hand, a macroscopic concentration of baryonic matter can be
measured; we can quantify it using various parameters. The most common
choices are η = nB

nγ
and YB = nB

s ; an equivalent parametrization is the cosmo-

logical parameter ΩB . The value of η can be inferred in two independent ways
[40].

On one hand, it is possible to use η as an input parameter for the kinetic
equations of the Big Bang Nucleosynthesis to predict the concentrations of light
elements (D, 3He, 4He and 7Li). On the other hand, baryon concentration
plays a fundamental role in determining the acoustic peaks in CMB; in fact, at
the time of recombination, when CMB was produced, the Universe was basically
made of a plasma of photons and baryonic matter, so acoustic hydrodynamic
oscillations depended on baryon concentration.

Both these arguments lead to the following values for baryon concentration:

η =
nB
nγ
|0 = (6.21± 0.16)× 10−10 (2.53)

YB =
nB
s
|0 = (8.75± 0.23)× 10−11 (2.54)

where the subscript 0 indicates that the values refer to present time (as was
mentioned in the previous section, only a small correction due to e+− e− anni-
hilation is expected for the present time value).
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By the previous arguments we know that the concentrations of antibaryons
is completely negligible with respect to the concentration of baryons, so that
we may as well interpret η as

nB−nB
nγ

. The question arises as to whether we

should consider η as an initial condition on the Universe itself or we should
look for a way of calculating it from first principles. Apart from aesthetical
advantages, there is an important theoretical reason for trying to deduce η from
first principles. In fact, inflation would have washed out any preexisting baryon
asymmetry; it follows that such an asymmetry, if inflation has happened, has
to be regarded as dynamically generated.

The possibility of describing the spontaneous generation of a non vanish-
ing baryonic number from a state characterized by a net zero baryonic number
requires some specific conditions on the microphysics at the basis of our cosmol-
ogy; these conditions were identified for the first time by Sakharov [1]. They
can be summarized as follows:

1. There should exist baryon number violating interactions. This condition is
obvious in that we want to pass from a state with zero baryonic number to
a state with a non zero baryonic number. As has been outlined in Chap-
ter 1, the Standard Model naturally contains baryon number violating
interactions of topological nature, which appear in the form of instantons
and sphalerons; as it was noted there, although at zero temperature their
effects are strongly suppressed, thermal fluctuations can make their rates
appreciable. The vanishing of the anomaly in the B − L current gives a
selection rule for these processes that ∆B = ∆L = 3n, where the factor
of 3 comes from the number of families. We mention here that in GUT
baryon and lepton number violating interactions already appear at tree
level; they are in fact suppressed by a factor ∼ 1

M , where M is the breaking
scale of the gauge unification group.8

2. There should exist C and CP violating interactions. In fact, if this were
not true, then the number of baryons and antibaryons would remain equal
for all the time as it was at the beginning. The Standard Model contains
C and CP violating interactions, due to the phase in the CKM matrix;
we also remark that, by adding mass terms to neutrinos, a new source of
CP violation comes from the phase of the PMNS matrix.

3. The relevant processes for baryogenesis should happen out of equilibrium.
This can be understood heuristically by noting that, by definition, the
equilibrium state is macroscopically invariant under time reversal; since
the fundamental theory is assumed to be CPT invariant, such a state
also preserves CP , which means that no baryon number can arise. More
quantitatively, at chemical equilibrium one can impose the relevant con-
straints on the chemical potentials which admit as a solution the vanishing
of µB = µB = 0 and thus a vanishing baryon number. The Standard Cos-
mological Model naturally contains an out of equilibrium period during

8This typically means a scale ∼ 1015 GeV , which is above the range of interest for lepto-
genesis.
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the electroweak phase transition; however, it has been proven that the
experimental lower bound on the Higgs mass is such that the transition is
not a first order one9 [41].

Many possibilities have been proposed which met all of the above condition.
In the context of Standard Model alone, CP violation is too small to produce
consistent baryogenesis; furthermore, as we noted above, the electroweak phase
transition is of second order, and it is not able to reproduce a succesful baryoge-
nesis. It is necessary to extend the Standard Model to include CP and baryon
number violating processes. A set of models which are collectively known as
electroweak baryogenesis are based on a suitable modification of the Higgs con-
tent of the theory which makes the electroweak transition a second order one.

An alternative possibility is to introduce CP and lepton number violating
processes in order to produce a non vanishing lepton number, which is then con-
verted, by means of sphalerons, to baryon number; this scenario goes under the
name of baryogenesis via leptogenesis [2]. A particularly attractive possibility
lies in the identification of the above mentioned process with the seesaw mech-
anism; in fact, as was described in Chapter 1, the heavy right-handed neutrino
possesses an interaction vertex with the Higgs and the left-handed neutrino
which causes it to decay through a generally CP non invariant amplitude. The
out of equilibrium processes would then be provided by the freezing out of right-
handed neutrinos, whose Yukawa couplings are supposed to be such that at the
temperature of leptogenesis they are just decoupling.

When the seesaw mechanism is identified with the process responsible for
leptogenesis the model is called thermal leptogenesis.

2.6 Thermal leptogenesis

In the thermal leptogenesis scenario it is supposed that the asymmetry is gen-
erated by the CP violating decay of heavy neutrinos; the mechanism is inspired
by the delayed decay model, originally proposed for B and CP violating decays
in [42].

The basic requirement is that the heavy decaying species runs out of equi-
librium at a temperature T ≤M , where M is the mass of the decaying particle.
In fact, suppose this was not true; then, at the time at which the species freezes
out, Boltzmann equation for the decaying species still admits an equilibrium
form for the particle distribution with a temperature T ∼ 1

a . This result was
proved in the above section; there we found it to be rigorously true for species
whose mass is negligible at the temperature of interest. We can now explain the
physical reason behind this requirement; the point is that, if the mass is of the
same order of magnitude or bigger than temperature, the concentration of heavy
particles is suppressed by a factor ∼ e−

M
T . In order for such a suppression to

9A heuristic understanding of the reason why there is a maximum Higgs mass which leads
to a first order phase transition comes from the observation that for high masses the theory
substantially behaves as if it was a simple φ4 theory without any other component; as is well
known, for such a theory the phase transition is of second order
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appear, decays have to happen more frequently than inverse decays; this is the
out of equilibrium condition we were looking for, which permits the production
of a non vanishing lepton number.

It might be objected that, although in the freezing out of the massive species
an asymmetry is produced because of the higher rate of decays over inverse
decays, the very production of the species had to happen in an asymmetric
way which should make the total baryon asymmetry vanish; the response to
the objection lies in the so called washout processes. In fact, decays, inverse
decays and scattering processes wash out any asymmetry which is preexisting
to the freezing out, including the ”anti-asymmetry” which was generated in the
thermal production of right-handed neutrinos.

The condition T ∼M requires thermal leptogenesis to happen at a temper-
ature of the order of the masses of right-handed neutrinos; a lower bound [43]
known as the Davidson-Ibarra (DI) bound, which is detailed a little more in
Appendix 2, can be put on such masses of order 108 GeV for successful lepto-
genesis. We underline that this bound is actually derived under the condition
that only a single neutrino species contributes; if two neutrinos are degener-
ate in mass leptogenesis can be resonantly enhanced and the DI bound can be
evaded; as will be seen in detail in Chapter 3, however, we are interested in a
regime which is not fully resonant. The conclusion which can be drawn is that
leptogenesis has to happen at a temperature higher than 108 GeV .

The quantitative description of the proposed mechanism requires an analysis
of the Lagrangian involving the right-handed and left-handed neutrinos [39].
The relevant terms are, apart from kinetic terms:

L = −1

2
N iN

c
iMi − λαilαNiφc − h.c. (2.55)

We have chosen right-handed neutrinos to be mass eigenstates; we remind the
reader that they are Majorana particles carrying zero lepton number. By lα
we describe the left-handed lepton doublet; at the temperatures of interest, the
Higgs field still has vanishing expectation value.

At tree level neutrino decay happens with an amplitudeM∼ λαi; since the
rate depends on the squared modulus of this matrix element it is evident that
there is no CP violation at tree level and we must include one loop amplitudes;
the contributing diagrams are shown in Figure 2.1. In the squared modulus of
the amplitudes there will now appear CP violating interference terms of order
O(λ4).

Let us define the decay rates ΓNi→lα+φ, ΓNi→lα+φ and the inverse decay rates
Γlα+φ→Ni = ΓNi→lα+φ and Γlα+φ→Ni = ΓNi→lα+φ because of CPT invariance.
We also introduce the CP asymmetry defined as:

εiα =
ΓNi→lα+φ − ΓNi→lα+φ

ΓNi→lα+φ + ΓNi→lα+φ

(2.56)

The Boltzmann equation for right-handed neutrino takes the standard form with
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Figure 2.1: Diagrams contributing to order O(λ2) in the amplitude to right-
handed neutrino decay (a) at tree level and (b) at one loop level (adapted from
[39]).

the collisional integral being determined by decays and inverse decays:

sHz
dYi
dz

= −
∑
α

γNi→lα+φ

(
Yi
Yieq

− Yα
Yαeq

Yφ
Yφeq

)
−
∑
α

γNi→lα+φ

(
Yi
Yieq

− Yα
Yαeq

Yφ
Yφeq

)
(2.57)

In (2.57) Yi, Yα, Yα, Yφ, Yφ are respectively the yields of the ith right-handed
neutrino, the αth lepton and antilepton, the Higgs and the antiparticle of the
Higgs (of course Yαeq = Yαeq and Yφ = Yφ).

At the temperatures of interest, set by the DI bound, all Standard Model
interactions are at equilibrium; in particular, this implies that the Higgs (and
its antiparticle) concentration can be set to its equilibrium value. The same
reasoning can be applied to lepton concentrations. There is, however, a slight
complication; in fact, if we blindly set Yα to its equilibrium value, we do not
obtain any leptogenesis. The subtlety lies in the fact that we are allowed to set
Yα and Yα separately to their equilibrium values apart from small corrections
which become important only when we pass to their difference Lα = Yα − Yα.
Since the Higgs is in chemical equilibrium with all other species, its asymmetry
Φ = Yφ − Yφ will have to be taken into account too.

Upon introducing the total neutrino decay rates and its thermal average Γi =∑
α

(
ΓNi→lα+φ + ΓNi→lα+φ

)
and γi =

∑
α

(
γNi→lα+φ + γNi→lα+φ

)
Boltzmann

equation becomes:

sHz
dYi
dz

= −γi
(
Yi
Yieq

− 1

)
(2.58)
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The other equation of interest is an evolution equation for Lα; before deriving
it, let us introduce the useful notation:

Γiα = ΓNi→lα+φ + Γlα+φ→Ni (2.59)

and similar notations for the thermally averaged rate γiα.
The collisional part of the integral receives contribution to order O(λ4) both

from tree and loop level amplitudes of decays and inverse decays and from
tree level amplitudes of scattering processes; a further contribution comes from
sphaleronic processes:

sHz
dYα
dz

=

(
dnα
dt

)
dec

+

(
dnα
dt

)
scat

+

(
dnα
dt

)
sphal

(2.60)

It will be later seen that the sphaleronic contribution needs not be computed;
for the following we will avoid writing it in the equations, although it has to be
kept in mind that its contribution is fundamental, and only later take it into
account.

We will be finally interested in the difference between this equation and the
corresponding one for Yα; it might then be thought that the scattering rate,
being evaluated from the squared modulus of tree level amplitudes, will not
produce any source term for the asymmetry. This turns out not to be true
because of a subtlety; in fact, the scattering processes lα + φ → lα + φ can be
mediated by on-shell right-handed neutrinos. Such processes have already been
taken into account from decays and inverse decays terms, and are therefore to
be subtracted from the scattering amplitudes. This is done most easily by using
a subtracted thermal rate; a typical example would be:

γ
(s)
lα+φ→lβ+φ = γlα+φ→lβ+φ − γlα+φ→Ni

1 + εiβ
2

(2.61)

where the subtraction rate has been determined from multiplying the decay
rate for the process lα+φ→ Ni by the branching ratio of the unstable neutrino
decay into lβ and φ.

The calculation for 3 flavors is complicated by the presence of many indices;
we will now do a conceptually analogous computation for a single flavour case,
which can be straightforwardly generalized to the flavoured case. We stress,
however, that this must be regarded as a purely pedagogical exercises, since,
with a single flavor, there is no CP asymmetry (see Appendix A for more
details).

We will denote by YN the right-handed neutrino yield, YL, YL and L =
YL − YL the lepton and antilepton yields and asymmetry respectively and by
Yφ, Yφ and Φ the Higgs and anti Higgs yields and its asymmetry; thermal decay
rates will be denoted by:

γN→L+φ = γL+φ→N =
γ

2
(1 + ε), γN→L+φ = γL+φ→N =

γ

2
(1− ε) (2.62)

To this order in λ the unsubtracted scattering rates are equal for all processes
L + φ → L + φ, L + φ → L + φ, L + φ → L + φ, L + φ → L + φ and will be
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denoted by γs. The equations for YL and YL, taking into account the previous
subtraction terms, are:

sHz
dYL
dz

= −γ
2

(1− ε) YL
YLeq

Yφ
Yφeq

+
γ

2
(1 + ε)

YN
YNeq

−(
γs − γ (1− ε) 1 + ε

4

)
YL
YLeq

Yφ
Yφeq

+

(
γs − γ (1 + ε)

1− ε
4

)
YL
YLeq

Yφ
Yφeq

−(
γs − γ (1− ε) 1− ε

4

)
YL
YLeq

Yφ
Yφeq

+

(
γs − γ (1 + ε)

1 + ε

4

)
YL
YLeq

Yφ
Yφeq

(2.63)

sHz
dYL
dz

= −γ
2

(1 + ε)
YL
YLeq

Yφ
Yφeq

+
γ

2
(1− ε) YN

YNeq
−(

γs − γ (1− ε) 1 + ε

4

)
YL
YLeq

Yφ
Yφeq

+

(
γs − γ (1 + ε)

1− ε
4

)
YL
YLeq

Yφ
Yφeq

−(
γs − γ (1 + ε)

1 + ε

4

)
YL
YLeq

Yφ
Yφeq

+

(
γs − γ (1− ε) 1− ε

4

)
YL
YLeq

Yφ
Yφeq

(2.64)

By subtracting them from one another and keeping only terms which are of first
order in ε (we remind that L and Φ are of the same order as ε) we find the
equation for the asymmetry:

sHz
dL
dz

= γε

(
YN
YNeq

− 1

)
− 2γs

(
L
YLeq

+
Φ

Yφeq

)
(2.65)

A simple check on our result is the absence of a source term for the asymme-
try when right-handed neutrinos are at equilibrium: had we not included the
subtraction term in the scattering rate, we would have obtained the unphysical
result that, even under equilibrium conditions, an asymmetry is produced.

The last term in (2.65) is called the washout term, since it has the effect
of destroying any asymmetry which precedes the out of equilibrium phase of
right-handed neutrinos. We notice that L+ φ→ L+ φ scattering is dominated
by on shell right-handed neutrino mediated collisions, so that we can write:

γs ∼
γ

4
(2.66)

neglecting terms of first order in ε.
Before generalizing the formulas obtained to the case of 3 flavours, let us

examine the assumptions made in the previous calculation. We have neglected
all processes involving Standard Model particles other than leptons; a part of
these processes will involve right-handed neutrinos (e.g., N → qr+qL+lα), while
others will include only leptons and Higgs particles (typical examples would be
φ + φ → lα + lβ). An accurate analysis confirms the intuitive results that, to
first order in ε, the former modify the total decay rate of right-handed neutrinos
while the latter influence the washout terms without modifying the structure of
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Boltzmann equations; their corrections are generally small and will be neglected
in the following.

Upon reintroducing flavor indices we find (using the notation of [44]:

sHz
dLα
dz

=
∑
i

εiαγi

(
Yi
Yieq

− 1

)
−
∑
i

γiα
2

(
Lα
Yαeq

+
Φ

Yφeq

)
(2.67)

where γiα is the total thermally averaged decay rate of right-handed neutrinos
into the αth species (both particle and antiparticle) and (2.66) has been used.
We will use the notation:

γiα = γiPiα (2.68)

We recall that Yieq is the equilibrium yield for a massive particle with 2

degree of freedom (since it is a Majorana particle) Yieq =
45M2

i z
2

2π4g∗SM
2K2(Miz

M );

Yαeq is the equilibrium yield for a fermionic relativistic particle with 2 degrees

of freedom (since it describes a doublet of particles) Yαeq = 135ζ(3)
4π4g∗S

; Yφeq is the

equilibrium yield for a bosonic relativistic particle with 2 degrees of freedom

Yφeq = 45ζ(3)
g∗Sπ

4 .

Decay rates and asymmetries are given by the following formulas:

Γi =
Mi

8π
(λ†λ)ii (2.69)

Piα =
λ†iαλαi
(λ†λ)ii

(2.70)

εiα =
1

8π

∑
k 6=i

Im
{
λ†iαλαk

(
λ†λ
)
ik

}
(λ†λ)ii

f

(
M2
k

M2
i

)
+

1

8π

∑
k 6=i

Im
{
λ†iαλαk

(
λ†λ
)
ki

}
(λ†λ)ii

g

(
M2
k

M2
i

)
(2.71)

where f and g are loop functions defined by:

f(x) =
√
x

 1− x

(1− x)
2

+
(

Γi
Mi
− x Γk

Mk

)2 + 1− (1 + x) log
1 + x

x

 (2.72)

g(x) =
1− x

(1− x)
2

+
(

Γi
Mi
− x Γk

Mk

)2 (2.73)

As was noted above we actually neglected a fundamental point, which makes
our derivation invalid; this is the presence of sphaleron reactions, which should
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be added to the collisional integral. Fortunately, there is an easy way to get
rid of the sphaleronic term by noting that Standard Model conserves B − L;
this means that, if we denote by Y∆α = Y∆B

3 − Y∆Lα , its collisional integral
will not contain any sphaleronic contribution (notice that Y∆Lα = Lα + Y∆lRα
contains the contribution of the asymmetries both of the left-handed and the
right-handed Standard Model leptons). Since, at the temperatures of interest,
baryonic number is conserved apart from topological processes, we can directly
write:

sHz
dY∆α

dz
= −

∑
i

εiαγi

(
Yi
Yieq

− 1

)
+
∑
i

γiα
2

(
Lα
Yαeq

+
Φ

Yφeq

)
(2.74)

The final point in our analysis is the derivation of a connection between the
variables Lα and Φ and Y∆α; such a connection derives from the equilibrium
conditions of all Standard Model reactions. As is well known, in fact, for an
equilibrium reaction the sum of the chemical potentials of all particles (taken
with the positive sign for reagents and with the negative sign for products)
vanishes.

This is a particularly subtle part of the study in that it involves the deter-
mination of which reactions are at equilibrium in the particular temperature
regime we are interested in; since leptogenesis happens at T ∼ M , this regime
will be fixed by the right-handed neutrino masses. It will be seen in Chapter 3
that the typical masses range from 109 to 1011 GeV ; here the following reactions
are at equilibrium [39]-[45].

• The Yukawa couplings with the Higgs are at equilibrium for all species
apart from e, u and d; these imposes 6 constraints (for t,b,c,s,τ and µ) on
the chemical potentials:

µt = µq3 + µφ, µb = µq3 − µφ, µc = µq2 + µφ

µs = µq2 − µφ, µτ = µlτ − µφ, µµ = µlµ − µφ
(2.75)

• The electroweak sphaleron reactions are at equilibrium; this imposes the
further constraint on the chemical potential of left-handed quark and lep-
ton doublets 3

∑
α µqα +

∑
α µlα = 0.

• An equilibrium hypercharge neutrality condition has to be imposed on all
species of the form

∑
α µqα+2

∑
α µuα−

∑
α µdα−

∑
α µlα−

∑
α µeα+2µφ =

0

• A QCD sphaleron reaction is also at equilibrium at this temperature,
leading to the condition 2

∑
α µqα −

∑
α µuα −

∑
α µdα = 0.

• The three baryon flavour asymmetries are all equal; this happens because
they are equal as an initial condition, and, as soon as flavour-changing
interactions come into equilibrium, they drive the asymmetries to equality.
We can therefore impose another condition 2µq1 + µu + µd = 2µq2 + µc +
µs = 2µq3 + µt + µb.
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• Since Yukawa couplings for e,u and d have not come into equilibrium, we
can assume their asymmetries to be conserved and equal to their initial
value, which is presumably 0; this imposes the further constraints µe = 0
and µu = µd.

The previous constraints have been analytically solved to express the quantities
of interest in terms of the µ∆α defined above:

Lα = AαβY∆β , Φ = CβY∆β (2.76)

where:

A =
1

2148

−906 120 120
75 −688 28
75 28 −688

 , C = − 1

358

37
52
52

 (2.77)

A somewhat tricky factor of 2 has to be included in the coefficients for the Higgs
boson because of the difference in (2.25) and (2.26) for bosons and fermions.

After these conditions are included, (2.58) and (2.74) form a system of 6
differential equations in the six unknown functions Yi and Y∆α which can be
numerically solved to deduce the asymptotic values. From these we can find
the baryon asymmetry which has been produced through a relation deriving
from the same chemical equilibrium conditions as the others; these conditions,
however, must not be imposed at the time of leptogenesis. In fact, after lepto-
genesis has happened, Y∆α becomes a conserved quantity while baryon number
keeps changing due to sphaleronic interactions. The final value of baryon num-
ber yield must be evaluated, therefore, at the moment the sphaleron runs out
of equilibrium; this happens at a lower temperature, when e, u and d Yukawa
coupling have also come to equilibrium. A straightforward calculation gives the
standard result:

Y∆B =
28

79

∑
α

Y∆α (2.78)

This has been deduced in the case of a single Higgs multiplet; in our specific
model we will need the extension to the case of two Higgs multiplets, whereby
the factor 28

79 is changed to 8
23 .

We reserve some final comments on the assumption at the basis of the use
of the Boltzmann formalism. This is derived in the context of a semiclassical
approximation, as was discussed before. It is possible, however, to obtain the
correct equations by writing the Schwinger-Dyson equations for the density
operator and perturbatively solve them; the terms in the perturbation series
quickly become involved and even the use of the diagrammatic technique in the
closed time path formalism [46] leads to long calculations. The results [47] differ
from the semiclassical ones used here in that they show a typical memory effect
in which the concentrations depend on the data from intermediate times on time
scales of order ∼ 1

E , where E is the typical energy of the particles involved. No
real estimate exist in literature of the importance of such effect.
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Chapter 3

Leptogenesis in an SO(10)
inspired context

3.1 Fermion masses in SO(10)

In this section we will introduce the notation and the model in the context of
which we have studied the baryogenesis problem. In Chapter 2 we found that a
kinetic analysis requires as input data the Yukawa couplings λαi of right-handed
neutrinos with the Higgs boson and the left-handed leptons and the right-handed
neutrino masses Mi; the former can be equivalently replaced by the Dirac neu-
trino mass matrix MDαi since, upon spontaneous symmetry breaking, they differ
by a factor of v, the vacuum expectation value of the Higgs. Such a mass ma-
trix can be expected to be quite hierarchical, similarly to the Yukawa coupling
of the heavy leptons with the Higgs. We have focused in our analysis on an
SO(10) inspired mass relation which will be analyzed in detail below; however,
we remark that this is just an example of a possible hierarchical structure for
the Dirac mass matrix, for which SO(10) plays the role of an inspiration. We
have not deeply investigated all the consequences of the specific SO(10) model
which has been used as a basis; this might be the object of a further analysis.

In Chapter 1 we deduced a number of mass relations which hold in the
case that the representation of SO(10) used to give mass to the leptons is a
10 or a 1261; as was described there, in both cases these relations induce a
proportionality between the Dirac and the quark mass matrices with coefficients
of order unity. Thus we could write them in the form:

Mu ∼MDν (3.1)

(In the following we will neglect the subscript ν). In our work, we have

1We recall that the 126, at a renormalizable level, is necessary in order to allow for the
right-handed neutrino Majorana mass term which will generate the seesaw mechanism
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assumed that this proportionality was a simple equality, as if only the 10 were
present:

Mu = MD (3.2)

Let us write the mass terms in the Lagrangian:

−1

2
MRijN iN

c
j −MDαiναNi − h.c. (3.3)

Differently from what we did in our treatment of thermal leptogenesis in Chapter
2, we have here used a basis for right-handed neutrinos which is different from
their mass eigenstates; we cannot assume, in fact, that the ”natural” basis for
SO(10), in the context of which (3.2) holds, coincides with the mass eigenstates
basis. In (3.3) Latin indices refer to right-handed neutrinos and Greek indices
refer to Standard Model flavours.

If we make the additional assumption that heavy leptons (electron, muon
and tauon) mass eigenstates coincide with weak interaction eigenstates, then
it follows that the matrix MD is diagonalized by the same CKM matrix which
appears in quarks weak interaction mixing. This specific assumption would not
be admissible without further analysis in a real SO(10) model; in fact, it has
been shown [48] that the best fit parameters are obtained for a matrix which
is not diagonal. Since we are interested in SO(10) mass relations only as an
example, however, we have not further investigated this point.

The matrix MD is generically not symmetrical; however, in a minimal ap-
proach to our simple SO(10) model we can imagine symmetry to be broken by
a 10 and a 126, which, as we saw before, possess a symmetrical Yukawa cou-
pling matrix. This leads to the assumption that MD is symmetrical; a natural
implication is that it can be diagonalized through a single unitary matrix:

MD = V †LM
diag
D V ∗L (3.4)

The seesaw mechanism now leads to a neutrino mass matrix of the form:

Mν = −MDM
−1
R MT

D (3.5)

We can invert this relation to express MR in terms of Mν and MD, which, by
our SO(10) hypothesis, is equal to Mu:

MR = −MDM
−1
ν MD (3.6)

We can easily pass to the representation where MR is diagonal by noting that
MR is a product of symmetrical matrices, and thus is symmetric; this means
that we can write:

MR = WMdiag
R WT (3.7)
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In the basis of right-handed neutrino eigenstates defined by (3.7) the Dirac mass
matrix becomes:

M̂D = MDW
∗ (3.8)

Since this was the basis in which all of our derivations about thermal leptogenesis
were made, the λ matrix introduced in the previous Chapter is linked to the
Dirac mass matrix by:

M̂D = λv (3.9)

3.2 Compactness in neutrino mass spectrum

The seesaw relation (3.6), together with the SO(10) inspired constraint (3.2),
leads to some difficulties in the production of an efficient leptogenesis. In fact,
due to the structure of MD, it implies a strong hierarchy in the masses for
the right-handed, with the lightest right-handed (which is generally the main
contributor to leptogenesis) having a mass M � 109 GeV . This is well below
the DI bound on the neutrino masses which are efficient for leptogenesis. Various
ways have been found to get rid of this problem; the two main proposals are
that the two heavier neutrinos contribute enough to produce by themselves an
efficient leptogenesis or that the masses of the right-handed neutrinos can be
constrained to be so close to one another to give rise to a resonant mechanism.
The road which has been explored in our work has been somewhere in between;
we have imposed a fine tuning on the parameters of the mass matrices, leading
to a mass spectrum which, though not degenerate, is compact in form with all
neutrino masses ranging around 109 − 1013 GeV .

To derive the conditions necessary to obtain such a compact spectrum we
first notice that (3.6) can be rewritten in the form:

MR = −V †LM
diag
D AMdiag

D V ∗L (3.10)

where:

A = V ∗LMνV
†
L (3.11)

For simplicity, let us approximate here VCKM with the identity matrix; in fact,
since we are only interested in producing a spectrum which is not hierarchical
in its orders of magnitude, this approximation will not significantly affect the
results of our analysis.

The right-handed neutrino mass matrix then becomes:

MRik ∼ −AikMDiMDk (3.12)

By the postulated quark-lepton symmetry, the Dirac masses satisfy the in-
equality MD3 �MD2 �MD1, and the approximate equality MD3MD2 ∼M2

D2.
A compact spectrum can then be obtained if the matrix A is such that:∣∣∣∣A33

A22

∣∣∣∣ ≤ M2
D2

M2
D3

,

∣∣∣∣A23

A22

∣∣∣∣ ≤ MD2

MD3
(3.13)
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In this way, the entries of the matrix which would be hierarchically large due
to largeness of MD3 are suppressed.2 In the following work, we have assumed
even more stringent conditions by requiring:

A23 = A33 = 0 (3.14)

By explicit computation one can now verify that, to first order in the small

quantity
M2
D1

M2
D3

, two of the three eigenvalues of the right-handed neutrino mass

matrix are degenerate.
We stress that the choice of setting the two matrix elements above equal to

zero is a simplicity choice, and, in general, they are only required to satisfy the
weaker condition (3.13).

We can now relax the condition that the CKM matrix coincides with the
identity, since, as we said before, we do not expect this choice to change the
order of magnitude of the MR eigenvalues, its elements being of order 1.

The condition (3.14) on the matrix A translates into a condition which must
be satisfied by the physical parameters of Mν . We recall that this matrix is
completely specified by 3 neutrino masses, 3 mixing angles, 1 Dirac phase and 2
Majorana phases; the two conditions above give 4 equations for the complex ma-
trix elements of the matrix A, and allow us to express 4 of the above parameters
in terms of the other. The obvious choice is to find the two Majorana phases
α and β (which would be otherwise unobservable), the CP -violating phase δ
and the mass of the lightest neutrino m1 (which cannot be determined through
mixing experiments).

The analytical expression for the elements of A of interest becomes slightly
simplified under the hypothesis that VCKM is parameterized through a single
non vanishing mixing angle; this is a good approximation, since we know that
one of the mixing angles is much larger than the other. In this approximation:

VCKM =

 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

 (3.15)

Equations (3.14) then read:

m2

m1
e−2iα = −

(
c12s23 + eiδs12s13c23

) [
scc12s13s23 + eiδ (scs12c23 − ccc12c13)

]
(−s12s23 + eiδc12s13c23) [−scs12s13s23 + eiδ (ccs12c13 + scc12c23)]

(3.16)

m3

m1
e−2iβ =

c13c23

[
scs12c23 + c12

(
−ccc13 + sce

−iδs13s23

)]
(−s12s23 + eiδc12s13c23) (scc13s23 + cceiδs13)

(3.17)

with the obvious notation cx = cos θx,sx = sin θx.

2This result has been derived by straightforward calculation which is analyzed in more
detail in [44].
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3.3 Numerical results: compactness of the spec-
trum

A first part of our work has consisted in the analysis of the constraints imposed
by (3.14) on the parameters of the PMNS matrix. In previous works [44] the
analysis was done in the hypothesis that the values of the mixing angles were set
to their best fit values. In order to allow for more freedom, in this work we have
instead randomly generated values of these angles inside the experimentally
allowed range of values centered around the best fit values with a width of
3σ. The choice of the signs of the angle deserves some comments; from the
form of the PMNS matrix it can be seen that a change in sign of θ13 can be
absorbed into a change δ → δ + π, since they always appear in the final matrix
in the combination sin θ13e

iδ. The situation is slightly more complicated for
the other angles. The crucial observation [49] lies in the fact that both Dirac
and Majorana spinors can be subject to the transformation ψ → −ψ without
changing the physical content of the theory; then it can easily be proven that
the change θ12 → −θ12 and θ23 → −θ23 merely amounts to a redefinition of
the signs of the spinors. For this reason, only positive values of the angles have
been generated.

The values of the squared mass differences were known from experiments
on mixing; therefore, for each set of PMNS mixing angles, one can solve the
compactness conditions to deduce the mass of the lightest neutrino m1, the CP
violating phase δ and the Majorana phases α and β. We anticipate that some
of the results in this section will be superseded by the stronger leptogenesis
constraint which will be imposed in Section 3.5. Such constraint, however, is to
be taken cum granu salis; due to our decision of using SO(10) just as an inspi-
ration for the mass rules which we adoperated, we have to take into account the
possibility that a consistent treatment of leptogenesis in a real SO(10) model
may modify the results of Section 3.5 (for a further discussion of this point we
refer the reader to the Conclusions). On the other hand, the results of this
Section, being based only on the mass rules of SO(10) and on the assumption
that charged leptons mass eigenstates coincide with weak eigenstates, are ex-
pected to change less; for this reason, we have decided to report these results
even though many of them will be later modified by the further constraint of
leptogenesis.

By taking the absolute value of (3.16) and (3.17) we find two coupled equa-
tions which do not contain the Majorana phases. For a given set of mixing
angles, these two conditions translate into two curves in the m1 − δ plane, of
which we need to find the intersections; a typical case, examined in [44], is
shown in Figure 3.1, where the values of δ are restricted to a range of [−π, π].
As can be seen, two solutions are admitted with nearly opposite values of δ and
the same values for m1.

For each of these two solutions, by taking the imaginary parts of (3.14) we
can solve for the Majorana phases, which are also nearly opposite in the two
cases; the same work has been repeated for each of the generated values of the
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Figure 3.1: Graphical method of solution of the compactness conditions in the
m1 − δ plane (adapted from [44]).

mixing angles.
After the generation, we have looked for correlations between admitted val-

ues for the parameters by plotting the points against various choices of the
PMNS parameters. In Figure 3.2 we have represented in the plane m1 − δ the
solutions which have been found for all the randomly generated values of the
mixing angles.

Since we were particularly interested in constraints on the mixing angles, in
Figure 3.3 we represent the points corresponding to the best fit value of δ (of
course they are taken actually from a very thin strip centered around the best
fit value of δ of width 0.01) in the plane of the angles θ12 and θ23. The reason
for this particular choice is that the points here showed, as is seen from the
figure, a linear correlation.

The linear correlation suggested by Figure 3.3, however, is evidenced in a
region which falls outside the confidence region for the mixing angles. Since
these mixing angles are determined with much better accuracy than the Dirac
CP violating phase, it is of interest to try to give a prediction for δ based on
the requirement that the points enter the confidence region; it is found that this
happens for 1.78π ≤ δ ≤ 1.80π (compare with the best fit value 1.37π). The
results are shown in Figure 3.4. Constraining the points to lie in the rectangle of
intersection of the two confidence regions for both θ12 and θ23 induces a further
inequality on m1, which is bound to lie between 0.0021 eV and 0.0026 eV .

3.4 Numerical solutions of Boltzmann equations

For each parameter set leading to a compact spectrum the Boltzmann equations
deduced in Chapter 2 have been solved; it is the purpose of this section to
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Figure 3.2: Generated points corresponding to compact neutrino mass spectrum;
the green region corresponds to the 1σ confidence region, the yellow region
corresponds to the 3σ confidence region and the blue dashed line is the best
fit value for δ. The cosmological constraints which rule out the upper region
descends from the requirement that neutrinos do not close the Universe (Ων <
1).

Figure 3.3: Generated points corresponding to compact neutrino mass spectrum
and to the best fit value of δ; the blue regions represent the 1σ confidence regions.
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Figure 3.4: Generated points corresponding to compact neutrino mass spectrum
and 1.78π ≤ δ ≤ 1.80π.

describe the numerical work involved in such a task.
The differential equations for the right-handed neutrino concentrations are

reproduced here for convenience:

sHz
dYi
dz

= −γi
(
Yi
Yieq

− 1

)
(3.18)

where we recall that z = M
T , M being a convenient mass scale; in our cases,

the neutrino mass spectrum being degenerate, we have chosen M to be 109

GeV , the typical order of magnitude for right-handed neutrinos. With this
choice leptogenesis is expected to happen at z ∼ 1, when right-handed neutrinos
become non relativistic and decouple.

(3.18) form a set of three independent linear differential equations with non
constant coefficients with the same form of the Boltzmann equations involved,
for example, in the freeze-out of a cold relic [50]. They admit the same qualita-
tive behavior, with the solutions reaching asymptotically Yieq. In Figure 3.5 we
represent the behavior of Yi(z) for two different initial conditions to prove the in-
dependence of this result; in both cases the solution approaches, in a time which
is very short relative to the timescale of leptogenesis (z ∼ 1), the equilibrium
solution. It is not a trivial consequence that the final result for the leptonic yield
should be independent of the initial conditions on the right-handed neutrinos;
we have verified such independence explicitly by using both initial conditions
to compute the yield. The equations have been numerically solved using the
software Mathematica c©.
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(a) (b)

Figure 3.5: Numerical evolution compared with equilibrium distribution for (a)
thermal initial conditions and (b) vanishing initial conditions; the equilibrium
distribution is shown in orange, the thermal distribution is shown in black.

We now reproduce the equations for B − L asymmetries:

sHz
dY∆α

dz
= −

∑
i

εiαγi

(
Yi
Yieq

− 1

)
+
∑
i

γiα
2

(
Lα
Yαeq

+
Φ

Yφeq

)
(3.19)

These are a set of coupled linear differential equations; both the coefficients
of the homogeneous part and the non homogeneous terms vanish asymptoti-
cally, which implies the possibility of a non vanishing asymptotic yield. The
non homogeneous terms depend on the solution of (3.18), so they are known
numerically.

In the numerical treatment of this system a number of difficulties have been
encountered; they are all linked with the so called stiffness problem of the
system [51]. To explicitate the existence of this problem we now turn to an
explicit decoupling of the equations. We can rewrite the system, with obvious
notation, as:

dY∆α

dz
= Mαβ(z)Y∆β(z) + fα(z) (3.20)

The matrix Mαβ is not symmetrical; it has, however, real eigenvalues λa(z)

and eigenvectors v
(a)
α (z). The dependence of the eigenvectors on z is actually

so slight as to be undetectable by numerical work because of the compactness
in the mass spectrum; it can be easily seen, by explicitating the form of Mαβ ,
that this simplification derives from the compactness of the spectrum, which
makes the three equilibrium distributions for the species nearly equal. In the

following, we will consider v
(a)
α to be independent of z. We can decompose the

solution over these eigenvectors:

Y∆α(z) =
∑
a

ca(z)v(a)
α (z) (3.21)
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Figure 3.6: Numerical prediction for the three eigenvalues λ(z) for a typical
case.

We can use the set of vectors:

ua = εabcv(b) × v(c) (3.22)

to project the equations for Y∆α into three decoupled equations for the coeffi-
cients of the decomposition of the form:

dca
dz

= λa(z)ca(z) + φa(z) (3.23)

where we have used Mαβv
(a)
β = λav

(a)
α and, by straightforward substitution, one

finds:

φa(z) =
fα(z)uaα

v
(a)
α uaα

(3.24)

The behavior of λa(z) is represented in Figure 3.6 for a typical case; the nega-
tive sign denotes that the solution will settle to an equilibrium. However, the
absolute value of the maximum reaches values of order ∼ 106; a consequence
is that the timescale over which the solution undergoes consistent changes is
δz ∼ 10−6. A numerical algorithm using a step larger than this quantity will
necessarily produce solutions which do not reproduce the true behavior and in
general lead to fictitious divergences. The fact that we are interested in much
larger timescale (z ∼ 1) justifies the stiffness problems encountered by the nu-
merical algorithm proposed by Mathematica c©; in fact, using s step δz ∼ 10−6

over such timescales requires a running time of days for a single data set. We
have therefore decided to follow a different path to the solution of the system.

It is well known that a linear system of the form (3.23) admits an exact
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solution in the form:

ca(z) = e
∫ z
zmin

λa(z′)dz′
(
ca(zmin) +

∫ z

zmin

φa(z′)e
−

∫ z′
zmin

λa(z′′)dz′′
dz′
)

(3.25)

Some observations are in order here. First we notice that the integral of λa
over z from zmin to +∞ converges; were it not so, the exponential factor before
the parenthesis would make the asymptotic yield vanish (recall that λa is always
negative). At the same time, due to the magnitude of the maximum of |λa|, the
value of this integral is extremely large, which causes the contribution of the
initial condition to be unimportant in determining the asymptotic value of the
yield. The determination of the solution through the use of (3.25) is still not
trivial from a numerical standpoint; in fact, the magnitude of the exponents, for
z far enough from zmin, would cause overflow problems in the computation of
the integrals. Such problems are interpreted by Mathematica c© as fictitious di-
vergences of the integrals. We can explicitly cancel these divergences by writing
(3.25) in the equivalent form3:

ca(z) =

∫ z

zmin

φa(z′)e
∫ z
z′ λa(z′′)dz′′dz′ (3.26)

This form of the solution contains only integrals which, for z far enough from
zmin, can be done numerically without overflow problems; notice, however, that
they are affected by the same trouble for z near zmin, where the previous form
was more useful. It follows that the complete solution requires a separation of
the interval in z into a region near zmin and a region far from it; an example of
a sample of the points of our solution for a typical case is given in Figure 3.7.
Since we are interested only in the asymptotic value, however, we can directly
use (3.26) to obtain it (for z → +∞) without any need for the intermediate
evolution (which is the main advantage of this treatment).

To increase confidence in our method, we have also computed the value of
the integral approximately; the form of the integrand, in fact, makes it an ideal
field of application of the saddle point approximation. It has been found that
the two results, the one obtained by numerical evaluation of the integral and the
one obtained by saddle point approximation, differ to within an error of 10%.

3.5 Numerical results: leptogenesis

We now describe the results obtained from our numerical method. Only a
small number of the set of parameters leading to a compact spectrum is able to
guarantee an efficient leptogenesis; in fact, only 54 out of 1661 points produced
a baryonic yield which is consistent with the theoretical value in a 3σ confidence
range.

In the same way as we did for the compact neutrino masses data, we plotted
these 54 points against various sets of parameters, in order to look for correla-
tions. The linear behavior which had been found in Figure 3.3 for the variables

3The contribution of the initial conditions will not be written anymore
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Figure 3.7: Sample of the numerical solution of c1(z) for a typical case.

sin2 θ12 and sin2 θ23 for a fixed value of δ is not observed now; however, we have
represented in Figure 3.8 the points on the same axes for all values of δ. It can
be seen that an efficient leptogenesis is not obtained in the lower right quadrant
of the plot (the dashed lines are the best fit values of the parameters). A physical
conclusion is that if sin2 θ12 ≤ 0.3 then sin2 θ23 is bound to be sin2 θ23 ≤ 0.5.

Figure 3.8: Points corresponding to a baryonic yield in a range of 3σ from the
experimental value in the plane sin2 θ12 − sin2 θ23.

An interesting correlation has been found in the α − β plane for the points
leading to a compact mass spectrum; these are represented in Figure 3.9. It is
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found that they lie only in two narrow regions of the parameter α; in particular,
the best fit value of α can be estimated to be |α| ∼ π

2 , while β is found to lie
only in narrow regions centered around the values β ∼ 0.3π and β ∼ −0.7π.

Figure 3.9: Numerical results in the α−β plane; the points leading to a compact
mass spectrum are shown in blue, the points leading to a baryonic yield in a 3σ
range from the experimental value are shown in red.

The plot given in Figure 3.2 has been modified to include the constraint
coming from leptogenesis; the result is given in Figure 3.10. Of the regions
which were initially populated by points with a compact mass spectrum, only
the lower ones survive the leptogenesis constraint.

For this reason, the possibility of giving a confidence region for the parameter
m1 on the basis of purely leptogenesis constraint is admitted; we represent in
Figure 3.11 the points in the m1 − Y plane. It is evident that all the points
leading to an efficient leptogenesis have an m1 between 0.0017 eV and 0.0035
eV . From the correlation between m1 and δ analyzed in Figure 3.10 it is also
possible to find regions in which δ lies, which are centered around the values
δ ∼ −0.79π and δ ∼ 0.23π4.

We looked for similar exclusion region for the values of the mixing angles
θ12, θ13 and θ23; however, we did not find any, and therefore we conclude that
we are not able to give informations, through our leptogenesis model, on these
angles separately, but only through the correlations analyzed above.

A final plot, reported in Figure 3.12, represents the Jarlskog invariant [52],
defined as J = Im{U12U23U

∗
13U

∗
32}, in the JY plane; the advantage of the use of

this quantity is its independence on the parameterization of the PMNS matrix.
From the plot we can deduce that the Jarlskog parameters which can give an

4The corresponding regions with δ → −δ are admitted as well.
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Figure 3.10: Numerical results in the m1 − δ plane; the points leading to a
compact mass spectrum are shown in blue, the points leading to a baryonic
yield in a 3σ range from the experimental value are shown in red.

Figure 3.11: Numerical results in the m1 − Y plane; the points leading to a
compact mass spectrum are shown in blue while the 3σ confidence region is
shown in red.

efficient leptogenesis are in the region 0.017 ≤ |J | ≤ 0.024. The sign of J is of
course extremely important since it determines the sign of Y ; this explains the
particular symmetry structure of the plot.

We finally add that there is an extremely narrow region, of which we have
managed to find a single point, that does not intersect the previously stated
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intervals; this can be qualitatively characterized by the fact that the Jarlskog
invariant is negative, in contrast to the other solutions.

Figure 3.12: Numerical results in the J − Y plane; the points leading to a
compact mass spectrum are shown in blue while the 3σ confidence region is
shown in red.
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Conclusions

Leptogenesis is an attractive model which is able to handle the problem of
baryon asymmetry in the Universe using the same seesaw mechanism proposed
to describe the neutrino masses. The strongest obstacle to its predictive power
is the insensitivity of low energy physics to the seesaw parameters; this prevents
us from having information on the Dirac neutrino masses and, therefore, from
giving an estimate of the BAU predicted from the model. Only qualitative ex-
pectations, such as the hierarchy in the Dirac mass matrix, due to the similarity
with the charged leptons mass matrix, are available at the present.

A way out of this hiatus is to try to estimate the seesaw parameters using
mass relations coming from higher symmetry groups; the main example given in
this thesis was a specific mass relation obtained in an SO(10) inspired context.
After this subsidiary information is added to the model, the way is open to
predicting explicitly the baryonic yield. A difficulty comes from the natural
hierarchy which would easily appear in the right-handed neutrino spectrum,
which mirrors that appearing in the Dirac mass matrix; such a hierarchy brings
the mass of the lightest neutrino, which is responsible for leptogenesis, below the
Davidson-Ibarra limit. Different solutions have been proposed for this problem;
the one analyzed in this work makes recourse to the imposition of a fine tuning on
the left-handed neutrino mass parameters leading to a compact mass spectrum.
Once this difficulty has been overcome, the baryonic yield can be predicted and
compared to the experimental value to obtain bounds on the mass parameters.

In this work we have concentrated on proving the possibility of deriving
constraints on low energy physics parameters from the requirement of consistent
leptogenesis. We found that it was possible to restrict the range of some of the
parameters of the PMNS matrix; in particular, m1 was found to lie between
0.0017 eV and 0.0035 eV ; δ lies in regions centered on the values of δ ∼ −0.79π
and δ ∼ 0.23π; the Jarlskog invariant lies in the interval 0.017 ≤ |J | ≤ 0.024;
the Majorana phase α lies around the value of |α| ∼ π

2 , while β is found in
narrow regions around the values β ∼ 0.3π and β ∼ −0.7π. A final result
suggested by our analysis is the absence of population of one of the octants in
the sin2 θ12 − sin2 θ23 plane.

Some intermediate results were also presented which do not make use of the
leptogenesis constraints but only requires the compactness of the right-handed
neutrino mass spectrum. The reason why these results may be considered of
interest is that they depend only on the SO(10) inspired assumption, and it
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is likely that they will not be modified in a further analysis which treats in a
detailed way all of the consequences of a real SO(10) model. A specific pattern
was found inm1−δ plane; moreover, a linear correlation was determined between
the variable sin2 θ12 and sin2 θ23 for fixed values of the Dirac phase δ.

We conclude by underlining that the aim of the present work was not as
much of practical importance in determining confidence ranges of parameters,
the hypothesis of mass relations being not completely justified; we were instead
interested in proposing an approach to leptogenesis which is able, even in the
context of hierarchical Dirac masses in which leptogenesis seemed to fail, to con-
nect the low energy neutrino mass physics to the high energy physics identified
by the BAU and the seesaw parameters.
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Appendix A

CP asymmetries and decay
rates

A.1 Feynman rules for Majorana fermions

A Majorana fermion may be regarded as a fermion possessing the same free
Lagrangian as a Dirac spinor:

L = ψ
(
i/∂ −m

)
ψ (A.1)

with the constraint:

ψ = Cψ∗ (A.2)

The operator C is a charge conjugation operator which depends on the repre-
sentation and is required to satisfy:

Cγµ∗ = −γµC (A.3)

In the Dirac representation γ2 is the only matrix with imaginary elements, so
that we can take C = γ2 (a great deal of literature is devoted to proving the
invariance of Feynman rules under different representations; we will use this one
without worrying about such problems).

The quantization of the field can now proceed by the usual methods through
an expansion of the field operator into solutions of the free Majorana lagrangian;
it is easy to see that the constraint (A.2) requires the field to take the form:

ψ(x) =

∫
d3p

(2π)32Ep

∑
λ

[
ξpλapλe

−ip·x + γ2ξ∗pλa
†
pλe

ip·x
]

(A.4)

where ξpλ are the two solutions, indicized by λ = 1,2, of the equation /pξpλ =
mξpλ and on-shell conditions are implicitly supposed for the four-vector p.
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Deduction of the rules now proceeds as usual, by expanding the S operator
in terms of the interaction vertices; the main difference between the Dirac case
is that now the same species can be created both by the operator ψ(x) and ψ(x).
This means that the Wick theorem now translates into the statement that every
matrix element can be reduced to the calculation of matrix elements of the fol-
lowing operators: 〈0|T

{
ψ(x)ψ(0)

}
|0〉,〈0|T {ψ(x)ψ(0)} |0〉,〈0|T

{
ψ(x)ψ(0)

}
|0〉.

We can now use the above expansion and the usual commutation rules to write
down an expression for the four-dimensional Fourier transforms of these func-
tions; these turn out to be proportional to sums of the form

∑
λ ξpλξpλ and∑

λ ξ
T
pλγ

2γ0ξpλ . These sums can be explicitly calculated, for example, in the
case that the three-dimensional impulse is directed along the z axis; the result
can then be extended to a relativistic invariant form. The calculations lead to
the following results:

〈0|T
{
ψ(x)ψ(0)

}
|0〉 =

∫
d4p

(2π)4

i

p2 −m2 + iε

(
/p+m

)
e−ip·x

〈0|T {ψ(x)ψ(0)} |0〉 =

∫
d4p

(2π)4

i

p2 −m2 + iε
γ2γ0

(
/p−m

)
e−ip·x

〈0|T
{
ψ(x)ψ(0)

}
|0〉 =

∫
d4p

(2π)4

i

p2 −m2 + iε

(
/p−m

)
γ2γ0e−ip·x

(A.5)

These results could also have been obtained through a path integral formulation;
we give a sketch of the derivation.

The generating functional of the Green functions is obtained by adding to the
Lagrangian a term of the form j(x)ψ(x) +h.c.; the constraint that the spinor is
of Majorana type can be imposed by inserting into the integral a representation
of a δ function:

Z
[
j, j
]

= e−iW [j,j] =

∫
DψDψeiS[ψ,ψ,j,j]

∏
x

δ
(
ψ(x)− γ2ψ∗(x)

)
=

∫
DψDψDφeiS[ψ,ψ,j,j]+i

∫
d4xφ(x)(ψ(x)−γ2ψ∗(x))

(A.6)

where of course the action is:

S
[
ψ,ψ, j, j

]
=

∫
d4x

[
ψ
(
i/∂ −m

)
ψ + jψ + ψj

]
(A.7)

The auxiliary field φ has been introduced as a spinor field with no conjugate
field. The integrals over ψ and ψ can be performed in the usual way to obtain a
functional of φ, j and j; the subsequent integral over φ can be easily performed
since the integrand is still the exponential of a quadratic functional of φ. The
calculation are lengthy but straightforward and they will not be done here, since
they lead to the same result of the second quantization treatment for the Green
functions.
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A.2 Calculation of leptogenesis amplitudes

We will first compute the total decay rate (into leptons and antileptons) of the
right-handed neutrino through the interaction Lagrangian:

LI = −λαilαNiφc − h.c. (A.8)

At tree level the amplitude for decay into lα and φ (Figure 2.1(a)) is:

−iλαiuαξi (A.9)

where uα and ξi are respectively the free final and initial spinors of the lepton
and the neutrino respectively. By squaring, summing over lepton polarizations
and averaging over neutrino polarizations, we easily find the result:

ΓNi→lα+φ =
Mi|λαi|2

16π
(A.10)

After multiplying by 2 to take into account the decay both in leptons and
antileptons, we find the result stated in the text for Γi.

Let us now turn to the calculation of the CP asymmetry. The diagrams
should contain contributions from all neutrino species; however, the contribution
to the ith vertex and wavefunction coming from an intermediate state containing
the ith neutrino itself contains no CP asymmetry, since it will contain a factor

of Im
{
|λαi|2|λβi|2

}
.

Taking into account the loop diagrams, we can write the squared matrix
elements for the decays in the following form:

|MNi→lα+φ|2 = |c0T0 + c1T1|2 = |c0T0|2 + 2 Re{c∗0T ∗0 c1T1}∣∣∣MNi→lα+φ

∣∣∣2 = |c∗0T0 + c∗1T1|2 = |c0T0|2 + 2 Re{c∗0T0c1T
∗
1 }

(A.11)

where c0 and c1 are the coupling constant part of the amplitude and T0 is the
kinematic part. The difference between these two matrix elements will then be
−4 Im{c∗0c1} Im{T ∗0 T1}. Let us evaluate this quantity for the three diagrams
in Figure 2.1(b); we reproduce them in Figure A.1 for convenience with the
kinematic variables used in the calculations.

A.2.1 Vertex correction

The first diagram in Figure 2.1(b) represents a correction to the interaction
vertex whose amplitude takes the form:∑

β,j 6=i

λαjλ
∗
βjλβi

∫
d4k

(2π)
4

1

/k − /q −Mj

1

/k

1

(P − k)
2 (A.12)

(the iε are not explicitly shown). The tree amplitude is −iλαi, so we are in-
terested in the real part of the integral in (A.12); these are obtained ([53]) by
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Figure A.1: Diagrams contributing to order O(λ2) in the amplitude to right-
handed neutrino decay (a) at tree level and (b) at one loop level with the
kinematic variables indicated.

substituting two of the three propagators by δ functions which keep the par-
ticles on shell. It is easy to see that the right-handed neutrino cannot be on
shell together with another one of the particles at the same time; therefore the
difference between the matrix elements will be:

−4
∑
β,j 6=i

Im
{
λαiλ

∗
αjλβjλ

∗
βi

}
π2

∫
d4k

(2π4)

1

/k − /q −Mj

/kδ
(
k2
)
δ
(

(P − k)
2
)

(A.13)

The integrals can be done in the easiest way in the COM frame where the initial
neutrino is at rest; we will not report the partial result since it will have to be
added to the other diagrams corrections.

A.2.2 Wavefunction correction

The remaining diagrams represent the corrections to the external leg; in par-
ticular, the second one is characteristic of Majorana spinors, which can decay
both into lβφ and lβφ. The corresponding amplitudes are:

∑
β,j 6=i

λ∗βiλβjλ
∗
αj

∫
d4k

(2π)
4

1

/P −Mj

1

/k

1

(P − k)
2

∑
β,j 6=i

λβiλ
∗
βjλ
∗
αj

∫
d4k

(2π)
4 γ

2γ0 1

/P +Mj

1

/k

1

(P − k)
2

(A.14)
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The real part of the amplitudes is obtained by setting both the lepton and the
Higgs on shell and substituting the two propagators with the corresponding δ.
The final integrals can be done in the COM frame.

To compare the results with the formulas given in Chapter 2 it remains to
integrate over the phase space; the calculations are straightforward although
lengthy.

A.2.3 Degenerate masses

A final point which needs to be taken into account is the possibility of nearly
degenerate masses. In this case, in fact, the wavefunction corrections are af-
fected by a small denominator (in the limit of perfect degeneracy it apparently
vanishes) which causes divergences in the above formulas. The physical cause
for these divergences lies in the fact that, in the limit of perfect degeneracy, the
two degenerate neutrinos can be regarded as two effective states of the same
particle which are mixed by the interaction; therefore, they cannot be used as
rigorous in and out states in the S matrix formulation. Instead, we should write
the complete set of Green functions 〈0|T

{
N i(x)Nj(0)

}
|0〉:(

〈0|T
{
N i(x)Ni(0)

}
|0〉 〈0|T

{
N i(x)Nj(0)

}
|0〉

〈0|T
{
N j(x)Ni(0)

}
|0〉 〈0|T

{
N j(x)Nj(0)

}
|0〉

)
(A.15)

and diagonalize it (using the Dyson equations for each propagator) to obtain
the right in and out states.

We can, however, obtain the results given in Chapter 2 through a simple
observation (this reasoning, however, is not to be regarded as rigorous; it is
only meant to heuristically motivate the form given for the regulator. A rigorous
derivation follows the path described above); the degeneracy in the masses, in
fact, is lifted by the interaction, due to the different lifetimes Γi and Γj for the
two different species. This enters the previous formulas in the following way.
We remind the reader that, in the presence of a finite lifetime, the propagator
develops an imaginary part in the pole and takes the typical Breit-Wigner form

1
P 2−M2

j−iMjΓj
. In the diagrams above this is to be substituted for the propagator

of the intermediate jth right-handed neutrinos; moreover, the on shell condition
P 2 = M2

i should be replaced, at a purely mathematical level, by the form
P 2 = M2

i + iΓiMi. This means that all the factors 1
M2
i −M2

j
should be replaced

by the real part of the modified propagator:

1

M2
i −M2

j

→
M2
i −M2

j(
M2
i −M2

j

)2
+ (ΓiMi − ΓjMj)

2
(A.16)

By explicit substitution the formulas given in Chapter 2 can now be straight-
forwardly be derived.
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Appendix B

Deduction of the
Davidson-Ibarra (DI)
bound

Let us start with the expressions (2.71) for the CP asymmetries in the decay of
the right-handed neutrinos. Since our aim here is to prove the existence of the
bound in the case of hierarchical neutrinos, we will now take the limiting form
of the loop functions for the ε1α (N1 being the lightest neutrino) for the case
that M1

M2,3
→ 0; the regulators in the denominator can clearly be neglected. It is

easy to see that f(
M2
k

M2
i

)→ − 3
2
M1

Mk
, while g(x) is smaller by another factor of M1

Mj

and will be neglected. We thus obtain an estimate for the CP asymmetries:

εiα = −
3Mi

∑
k 6=j,β Im

{
λ†iαλαkλ

†
iβλβk

}
16π (λ†λ)iiMk

(B.1)

Upon recognizing the seesaw formula for the mass of the left-handed neutrino
mass matrix Mν we find:

εiα =
3Mi

16π (λ†λ)ii v
2

∑
k 6=i

Im
{
λαi

(
m∗λT

)
αi

}
(B.2)

We can put an upper limit on the dot product inside the imaginary part to
obtain the inequality:

εiα ≤
3MiMνmaxPiα

16πv2
(B.3)

This upper bound is the core result of this section; it explicitly shows that
the CP asymmetry and the masses of the neutrinos are not independent. The
successive step of the reasoning necessarily involves the numerical work of finding
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the required CP asymmetry for producing a baryon asymmetry of the same
order as the observed one. This numerical work [39] implies that ε ≥ 10−6.
Taking for Mνmax the atmospheric mass, we find the bound stated in this work:

M1 ≥ 109GeV (B.4)
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