|
1 | 1 | - benchmark: fbgemm_embedding
|
2 | 2 | name: fbgemm_embedding_a_single
|
3 |
| - description: Embedding workload for ai benchmark with one representative table |
| 3 | + description: Performance benchmark for Model A workload using one single representative embedding table. |
4 | 4 | args:
|
5 | 5 | - nbit-cpu
|
6 | 6 | - '--num-embeddings={embeddings}'
|
|
9 | 9 | - '--batch-size={batch_size}'
|
10 | 10 | - '--num-tables={num_tables}'
|
11 | 11 | - '--weights-precision={weights_precision}'
|
| 12 | + - '--output-dtype={output_dtype}' |
12 | 13 | - '--copies={copies}'
|
13 | 14 | - '--iters={iters}'
|
14 | 15 |
|
15 | 16 | vars:
|
16 | 17 | - 'embeddings=40000000'
|
17 | 18 | - 'bag_size=2'
|
18 | 19 | - 'embedding_dim=96'
|
19 |
| - - 'batch_size=166' |
20 |
| - - 'num_tables=1' |
| 20 | + - 'batch_size=162' |
| 21 | + - 'num_tables=8' |
21 | 22 | - 'weights_precision=int4'
|
| 23 | + - 'output_dtype=fp32' |
22 | 24 | - 'copies=16'
|
23 |
| - - 'iters=1000' |
| 25 | + - 'iters=30000' |
24 | 26 |
|
25 | 27 | - benchmark: fbgemm_embedding
|
26 | 28 | name: fbgemm_embedding_a_spec
|
27 |
| - description: Embedding workload for ai benchmark with 8 representative tables having different bag sizes. |
| 29 | + description: Performance benchmark for Model A workload using a representative set of embedding tables with different bag sizes. |
28 | 30 | args:
|
29 | 31 | - nbit-device-with-spec
|
30 | 32 | - '--num-embeddings-list={embeddings_list}'
|
31 | 33 | - '--bag-size-list={bag_size_list}'
|
32 | 34 | - '--embedding-dim-list={embedding_dim_list}'
|
33 | 35 | - '--batch-size={batch_size}'
|
34 | 36 | - '--weights-precision={weights_precision}'
|
| 37 | + - '--output-dtype={output_dtype}' |
35 | 38 | - '--cpu-copies={copies}'
|
36 | 39 | - '--iters={iters}'
|
37 | 40 | - '--use-cpu'
|
38 | 41 |
|
39 | 42 | vars:
|
40 |
| - - 'embeddings_list=40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000' |
41 |
| - - 'bag_size_list=1,1,1,1,1,1,1,5' |
42 |
| - - 'embedding_dim_list=96,96,96,96,96,96,96,96' |
43 |
| - - 'batch_size=166' |
| 43 | + - 'embeddings_list=40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000,40000000' |
| 44 | + - 'bag_size_list=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5' |
| 45 | + - 'embedding_dim_list=96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96' |
| 46 | + - 'batch_size=168' |
44 | 47 | - 'weights_precision=int4'
|
| 48 | + - 'output_dtype=fp32' |
45 | 49 | - 'copies=16'
|
46 |
| - - 'iters=1000' |
| 50 | + - 'iters=20000' |
47 | 51 |
|
48 | 52 |
|
49 | 53 | - benchmark: fbgemm_embedding
|
50 |
| - name: fbgemm_embedding_b_spec |
51 |
| - description: Embedding workload for ai benchmark with 8 representative tables having different bag sizes. |
| 54 | + name: fbgemm_embedding_b_spec_int4 |
| 55 | + description: Performance benchmark for Model B workload using a representative set of embedding tables with int4 precision. |
52 | 56 | args:
|
53 | 57 | - nbit-device-with-spec
|
54 | 58 | - '--num-embeddings-list={embeddings_list}'
|
55 | 59 | - '--bag-size-list={bag_size_list}'
|
56 | 60 | - '--embedding-dim-list={embedding_dim_list}'
|
57 | 61 | - '--batch-size={batch_size}'
|
58 | 62 | - '--weights-precision={weights_precision}'
|
| 63 | + - '--output-dtype={output_dtype}' |
59 | 64 | - '--cpu-copies={copies}'
|
60 | 65 | - '--iters={iters}'
|
61 | 66 | - '--use-cpu'
|
62 | 67 |
|
63 | 68 | vars:
|
64 |
| - - 'embeddings_list=100000,100000,100000,100000,100000,5000000,5000000,5000000,10000,10000,14794452' |
65 |
| - - 'bag_size_list=1,1,1,1,1,1,1,1,1,1,1' |
66 |
| - - 'embedding_dim_list=64,64,64,64,64,64,64,64,64,64,64' |
67 |
| - - 'batch_size=166' |
| 69 | + - 'embeddings_list=5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,14794752,4494000,4494000,4494000,4494000,4494000,4494000,4494000,4494000,4494000,4494000,1697000,1697000,1697000,1697000,1697000,1697000,1697000,1697000,1697000,5000000,5000000,5000000,5000000,5000000,5000000,5000000,2520064,2520064,2520064,2520064,2520064,2520064,2520064,1567000,1567000,1567000,1567000,1567000,1567000,1144000,1144000,1144000,1144000,1144000,1144000,1144000,1144000,1144000,1144000' |
| 70 | + - 'bag_size_list=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,5,5,3,3,4' |
| 71 | + - 'embedding_dim_list=64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64' |
| 72 | + - 'batch_size=190' |
68 | 73 | - 'weights_precision=int4'
|
| 74 | + - 'output_dtype=fp32' |
69 | 75 | - 'copies=16'
|
70 |
| - - 'iters=1000' |
| 76 | + - 'iters=4000' |
| 77 | + |
| 78 | + |
| 79 | +- benchmark: fbgemm_embedding |
| 80 | + name: fbgemm_embedding_b_spec_int8 |
| 81 | + description: Performance benchmark for Model B workload using a representative set of embedding tables with int8 precision. |
| 82 | + args: |
| 83 | + - nbit-device-with-spec |
| 84 | + - '--num-embeddings-list={embeddings_list}' |
| 85 | + - '--bag-size-list={bag_size_list}' |
| 86 | + - '--embedding-dim-list={embedding_dim_list}' |
| 87 | + - '--batch-size={batch_size}' |
| 88 | + - '--weights-precision={weights_precision}' |
| 89 | + - '--output-dtype={output_dtype}' |
| 90 | + - '--cpu-copies={copies}' |
| 91 | + - '--iters={iters}' |
| 92 | + - '--use-cpu' |
| 93 | + |
| 94 | + vars: |
| 95 | + - 'embeddings_list=100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,10000,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,872448,619520,619520,619520,619520,529408,529408,529408,529408,619520,619520,619520,872448,872448,872448,529408,529408,529408,529408,529408,529408,872448,872448,100000,100000,619520,619520,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,619520,100000,100000,100000,100000,100000,619520,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,10000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000,100000' |
| 96 | + - 'bag_size_list=1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,5,5,5,5,1,1,1,1,2,2,2,2,2,2,2,3,3,3,4,4,4,5,5,5,4,4,1,1,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1' |
| 97 | + - 'embedding_dim_list=64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64' |
| 98 | + - 'batch_size=188' |
| 99 | + - 'weights_precision=int8' |
| 100 | + - 'output_dtype=fp32' |
| 101 | + - 'copies=16' |
| 102 | + - 'iters=4000' |
0 commit comments