|
| 1 | +// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. |
| 2 | + |
| 3 | +#include <ATen/ATen.h> |
| 4 | +#include <ATen/cuda/CUDAContext.h> |
| 5 | +#include <c10/cuda/CUDAGuard.h> |
| 6 | +#include <tuple> |
| 7 | + |
| 8 | +template <typename scalar_t> |
| 9 | +__global__ void InterpFaceAttrsForwardKernel( |
| 10 | + const int64_t* __restrict__ pix_to_face, // (P,) |
| 11 | + const scalar_t* __restrict__ barycentric_coords, // (P, 3) |
| 12 | + const scalar_t* __restrict__ face_attrs, // (F, 3, D) |
| 13 | + scalar_t* pix_attrs, // (P, D) |
| 14 | + const size_t P, |
| 15 | + const size_t F, |
| 16 | + const size_t D) { |
| 17 | + const int tid = threadIdx.x + blockIdx.x * blockDim.x; |
| 18 | + const int num_threads = blockDim.x * gridDim.x; |
| 19 | + for (int pd = tid; pd < P * D; pd += num_threads) { |
| 20 | + const int p = pd / D; |
| 21 | + const int d = pd % D; |
| 22 | + const int64_t f = pix_to_face[p]; |
| 23 | + if (f < 0) { |
| 24 | + continue; |
| 25 | + } |
| 26 | + scalar_t pix_attr = 0.0; |
| 27 | + for (int i = 0; i < 3; ++i) { |
| 28 | + scalar_t weight = barycentric_coords[p * 3 + i]; |
| 29 | + scalar_t vert_attr = face_attrs[f * 3 * D + i * D + d]; |
| 30 | + pix_attr += weight * vert_attr; |
| 31 | + } |
| 32 | + pix_attrs[p * D + d] = pix_attr; |
| 33 | + } |
| 34 | +} |
| 35 | + |
| 36 | +at::Tensor InterpFaceAttrsForwardCuda( |
| 37 | + const at::Tensor& pix_to_face, |
| 38 | + const at::Tensor& barycentric_coords, |
| 39 | + const at::Tensor& face_attrs) { |
| 40 | + // Make sure all inputs are on the same device |
| 41 | + at::TensorArg pix_to_face_t{pix_to_face, "pix_to_face", 1}, |
| 42 | + barycentric_coords_t{barycentric_coords, "barycentric_coords", 2}, |
| 43 | + face_attrs_t{face_attrs, "face_attributes", 3}; |
| 44 | + at::CheckedFrom c = "InterpFaceAttrsForwardCuda"; |
| 45 | + at::checkAllSameGPU(c, {pix_to_face_t, barycentric_coords_t, face_attrs_t}); |
| 46 | + at::checkAllSameType(c, {barycentric_coords_t, face_attrs_t}); |
| 47 | + |
| 48 | + // Set the device for the kernel launch based on the input |
| 49 | + at::cuda::CUDAGuard device_guard(pix_to_face.device()); |
| 50 | + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
| 51 | + |
| 52 | + const auto P = pix_to_face.size(0); |
| 53 | + const auto F = face_attrs.size(0); |
| 54 | + const auto D = face_attrs.size(2); |
| 55 | + |
| 56 | + TORCH_CHECK( |
| 57 | + barycentric_coords.size(0) == P && barycentric_coords.size(1) == 3, |
| 58 | + "barycentric_coords must have size (P, 3)"); |
| 59 | + TORCH_CHECK(face_attrs.size(1) == 3, "face_attrs must have size (F, 3, D)"); |
| 60 | + |
| 61 | + auto pix_attrs = at::zeros({P, D}, face_attrs.options()); |
| 62 | + const int threads = 1024; |
| 63 | + const int blocks = 512; |
| 64 | + AT_DISPATCH_FLOATING_TYPES( |
| 65 | + face_attrs.scalar_type(), "interp_face_attrs_cuda", ([&] { |
| 66 | + InterpFaceAttrsForwardKernel<<<blocks, threads, 0, stream>>>( |
| 67 | + pix_to_face.contiguous().data_ptr<int64_t>(), |
| 68 | + barycentric_coords.contiguous().data_ptr<scalar_t>(), |
| 69 | + face_attrs.contiguous().data_ptr<scalar_t>(), |
| 70 | + pix_attrs.contiguous().data_ptr<scalar_t>(), |
| 71 | + P, |
| 72 | + F, |
| 73 | + D); |
| 74 | + })); |
| 75 | + AT_CUDA_CHECK(cudaGetLastError()); |
| 76 | + return pix_attrs; |
| 77 | +} |
| 78 | + |
| 79 | +template <typename scalar_t> |
| 80 | +__global__ void InterpFaceAttrsBackwardKernel( |
| 81 | + const int64_t* __restrict__ pix_to_face, // (P,) |
| 82 | + const scalar_t* __restrict__ barycentric_coords, // (P, 3) |
| 83 | + const scalar_t* __restrict__ face_attrs, // (F, 3, D) |
| 84 | + const scalar_t* __restrict__ grad_pix_attrs, // (P, D) |
| 85 | + scalar_t* __restrict__ grad_barycentric_coords, // (P, 3) |
| 86 | + scalar_t* __restrict__ grad_face_attrs, // (F, 3, D) |
| 87 | + const size_t P, |
| 88 | + const size_t F, |
| 89 | + const size_t D) { |
| 90 | + const int tid = threadIdx.x + blockIdx.x * blockDim.x; |
| 91 | + const int num_threads = blockDim.x * gridDim.x; |
| 92 | + for (int pd = tid; pd < P * D; pd += num_threads) { |
| 93 | + const int p = pd / D; |
| 94 | + const int d = pd % D; |
| 95 | + const int64_t f = pix_to_face[p]; |
| 96 | + if (f < 0) { |
| 97 | + continue; |
| 98 | + } |
| 99 | + scalar_t upstream_grad = grad_pix_attrs[p * D + d]; |
| 100 | + for (int i = 0; i < 3; ++i) { |
| 101 | + scalar_t weight = barycentric_coords[p * 3 + i]; |
| 102 | + scalar_t vert_attr = face_attrs[f * 3 * D + i * D + d]; |
| 103 | + scalar_t grad_bary_down = vert_attr * upstream_grad; |
| 104 | + scalar_t grad_face_down = weight * upstream_grad; |
| 105 | + atomicAdd(grad_barycentric_coords + p * 3 + i, grad_bary_down); |
| 106 | + atomicAdd(grad_face_attrs + f * 3 * D + i * D + d, grad_face_down); |
| 107 | + } |
| 108 | + } |
| 109 | +} |
| 110 | + |
| 111 | +std::tuple<at::Tensor, at::Tensor> InterpFaceAttrsBackwardCuda( |
| 112 | + const at::Tensor& pix_to_face, |
| 113 | + const at::Tensor& barycentric_coords, |
| 114 | + const at::Tensor& face_attrs, |
| 115 | + const at::Tensor& grad_pix_attrs) { |
| 116 | + // Make sure all inputs are on the same device |
| 117 | + at::TensorArg pix_to_face_t{pix_to_face, "pix_to_face", 1}, |
| 118 | + barycentric_coords_t{barycentric_coords, "barycentric_coords", 2}, |
| 119 | + face_attrs_t{face_attrs, "face_attributes", 3}, |
| 120 | + grad_pix_attrs_t{grad_pix_attrs, "pix_attrs", 4}; |
| 121 | + at::CheckedFrom c = "InterpFaceAttrsBackwarduda"; |
| 122 | + at::checkAllSameGPU( |
| 123 | + c, {pix_to_face_t, barycentric_coords_t, face_attrs_t, grad_pix_attrs_t}); |
| 124 | + at::checkAllSameType( |
| 125 | + c, {barycentric_coords_t, face_attrs_t, grad_pix_attrs_t}); |
| 126 | + |
| 127 | + // Set the device for the kernel launch based on the input |
| 128 | + at::cuda::CUDAGuard device_guard(pix_to_face.device()); |
| 129 | + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); |
| 130 | + |
| 131 | + const auto P = pix_to_face.size(0); |
| 132 | + const auto F = face_attrs.size(0); |
| 133 | + const auto D = face_attrs.size(2); |
| 134 | + |
| 135 | + TORCH_CHECK( |
| 136 | + barycentric_coords.size(0) == P && barycentric_coords.size(1) == 3, |
| 137 | + "barycentric_coords must have size (P, 3)"); |
| 138 | + TORCH_CHECK(face_attrs.size(1) == 3, "face_attrs must have size (F, 3, D)"); |
| 139 | + TORCH_CHECK( |
| 140 | + grad_pix_attrs.size(0) == P && grad_pix_attrs.size(1) == D, |
| 141 | + "grad_pix_attrs must have size (P, D)"); |
| 142 | + |
| 143 | + auto grad_barycentric_coords = at::zeros_like(barycentric_coords); |
| 144 | + auto grad_face_attrs = at::zeros_like(face_attrs); |
| 145 | + const int threads = 1024; |
| 146 | + const int blocks = 512; |
| 147 | + // Only allow float for now. |
| 148 | + // TODO: Add support for double once we fix atomicAdd |
| 149 | + // clang-format off |
| 150 | + InterpFaceAttrsBackwardKernel<<<blocks, threads, 0, stream>>>( |
| 151 | + pix_to_face.contiguous().data_ptr<int64_t>(), |
| 152 | + barycentric_coords.contiguous().data_ptr<float>(), |
| 153 | + face_attrs.contiguous().data_ptr<float>(), |
| 154 | + grad_pix_attrs.contiguous().data_ptr<float>(), |
| 155 | + grad_barycentric_coords.contiguous().data_ptr<float>(), |
| 156 | + grad_face_attrs.contiguous().data_ptr<float>(), |
| 157 | + P, F, D); |
| 158 | + AT_CUDA_CHECK(cudaGetLastError()); |
| 159 | + // clang-format on |
| 160 | + return std::make_tuple(grad_barycentric_coords, grad_face_attrs); |
| 161 | +} |
0 commit comments