|
| 1 | +import os |
| 2 | +import random |
| 3 | +from pathlib import Path |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pytest |
| 7 | +import tensorflow as tf |
| 8 | +from keras.layers import Add, Dense |
| 9 | +from tensorflow import keras |
| 10 | + |
| 11 | +from hls4ml.converters import convert_from_keras_model |
| 12 | + |
| 13 | +test_root_path = Path(__file__).parent |
| 14 | + |
| 15 | + |
| 16 | +@pytest.fixture(scope='module') |
| 17 | +def model(): |
| 18 | + seed = 42 |
| 19 | + os.environ['RANDOM_SEED'] = f'{seed}' |
| 20 | + np.random.seed(seed) |
| 21 | + tf.random.set_seed(seed) |
| 22 | + tf.get_logger().setLevel('ERROR') |
| 23 | + random.seed(seed) |
| 24 | + |
| 25 | + inp = keras.Input(shape=(10,)) |
| 26 | + x = Dense(10)(inp) |
| 27 | + y = Dense(10)(inp) |
| 28 | + z = Dense(10)(inp) |
| 29 | + xy = Add()([x, y]) # 5 |
| 30 | + xy = Add()([xy, y]) # 5 |
| 31 | + out = Add()([xy, z]) # 5 |
| 32 | + model = keras.Model(inp, out) |
| 33 | + return model |
| 34 | + |
| 35 | + |
| 36 | +@pytest.fixture(scope='module') |
| 37 | +def data(): |
| 38 | + rng = np.random.RandomState(42) |
| 39 | + X = rng.normal(0, 1, (1000, 10)) |
| 40 | + X = np.clip(X, -16, 15) |
| 41 | + return X |
| 42 | + |
| 43 | + |
| 44 | +@pytest.mark.parametrize('backend', ['Vivado', 'Quartus', 'Vitis']) |
| 45 | +def test_multi_clone(model, data, backend: str): |
| 46 | + output_dir = str(test_root_path / f'hls4mlprj_stream_multi_clone_{backend}') |
| 47 | + hls_config = {'Model': {'Precision': 'fixed<32,5>', 'ReuseFactor': 1}} |
| 48 | + model_hls = convert_from_keras_model( |
| 49 | + model, |
| 50 | + backend=backend, |
| 51 | + output_dir=output_dir, |
| 52 | + hls_config=hls_config, |
| 53 | + io_type='io_stream', # clone only happens with stream io. |
| 54 | + ) |
| 55 | + model_hls.compile() |
| 56 | + r_hls = model_hls.predict(data) |
| 57 | + r_keras = model(data).numpy() |
| 58 | + |
| 59 | + assert np.allclose(r_hls, r_keras, atol=1e-5, rtol=0) |
0 commit comments