Skip to content

Commit 61e0a80

Browse files
committed
Continue with conversion
1 parent a57d520 commit 61e0a80

File tree

9 files changed

+281
-236
lines changed

9 files changed

+281
-236
lines changed

doc/references.rst

Lines changed: 0 additions & 147 deletions
This file was deleted.

tutorials/_config.yml

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,4 +44,8 @@ parse:
4444
- amsmath
4545
- dollarmath
4646

47-
47+
sphinx:
48+
config:
49+
bibtex_reference_style: author_year
50+
# bibtex_bibfiles: references.bib
51+

tutorials/_toc.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ format: jb-article
55
root: index
66
sections:
77
- file: voxelwise_modeling
8-
title: Voxelwise modeling framework
8+
title: Overview of the VEM framework
99
- file: voxelwise_package
1010
title: Helper Python package
1111
- file: notebooks/shortclips/README

tutorials/index.md

Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,48 @@
1+
# Voxelwise Encoding Model (VEM) tutorials
2+
3+
Welcome to the tutorials on the Voxelwise Encoding Model framework from the
4+
[GallantLab](https://gallantlab.org).
5+
6+
If you use these tutorials for your work, consider citing the corresponding paper:
7+
8+
> T. Dupré La Tour, M. Visconti di Oleggio Castello, and J. L. Gallant. The voxelwise modeling framework: a tutorial introduction to fitting encoding models to fMRI data. psyRxiv, 2024. [doi:10.31234/osf.io/t975e.](https://doi.org/10.31234/osf.io/t975e)
9+
10+
You can find a copy of the paper [here](https://github.com/gallantlab/voxelwise_tutorials/blob/main/paper/voxelwise_tutorials_paper.pdf).
11+
12+
## Getting started
13+
14+
This website contains tutorials describing how to use the
15+
[Voxelwise Encoding Model framework](voxelwise_modeling.html).
16+
17+
To explore these tutorials, one can:
18+
19+
- read the rendered examples in the tutorials
20+
[gallery of examples](_auto_examples/index.html) (recommended)
21+
- run the Python scripts ([tutorials](https://github.com/gallantlab/voxelwise_tutorials/tree/main/tutorials) directory)
22+
- run the Jupyter notebooks ([tutorials/notebooks
23+
](https://github.com/gallantlab/voxelwise_tutorials/tree/main/tutorials/notebooks)
24+
directory)
25+
- run the notebooks in Google Colab:
26+
[all notebooks](https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab.ipynb) or
27+
[only the notebooks about model fitting](https://colab.research.google.com/github/gallantlab/voxelwise_tutorials/blob/main/tutorials/notebooks/shortclips/merged_for_colab_model_fitting.ipynb) -->
28+
29+
The tutorials are best explored in order, starting with the [Shortclips
30+
tutorial](_auto_examples/index.html).
31+
32+
The project is available on GitHub at [gallantlab/voxelwise_tutorials
33+
](https://github.com/gallantlab/voxelwise_tutorials). On top of the tutorials
34+
scripts, the GitHub repository contains a Python package called
35+
`voxelwise_tutorials`, which contains useful functions to download the data
36+
sets, load the files, process the data, and visualize the results. Install
37+
instructions are available [here](voxelwise_package.html).
38+
39+
## Cite as
40+
41+
If you use one of our packages in your work (`voxelwise_tutorials`
42+
{cite}`dupre2023`, `himalaya` {cite}`dupre2022`, `pycortex`
43+
{cite}`gao2015`, or `pymoten` {cite}`nunez2021software`), please cite the
44+
corresponding publications.
45+
46+
If you use one of our public datasets in your work
47+
(`shortclips` {cite}`huth2022data`, `vim-2` {cite}`nishimoto2014data`),
48+
please cite the corresponding publications.

tutorials/index.rst

Lines changed: 0 additions & 67 deletions
This file was deleted.

0 commit comments

Comments
 (0)