@@ -749,6 +749,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
749
749
}
750
750
}
751
751
} break;
752
+ case LLM_ARCH_NEO_BERT:
753
+ {
754
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
755
+ ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
756
+ ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
757
+
758
+ if (hparams.n_layer == 28) {
759
+ type = LLM_TYPE_250M;
760
+ }
761
+ } break;
752
762
case LLM_ARCH_BLOOM:
753
763
{
754
764
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2212,6 +2222,32 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
2212
2222
layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
2213
2223
}
2214
2224
} break;
2225
+ case LLM_ARCH_NEO_BERT:
2226
+ {
2227
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
2228
+
2229
+ cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
2230
+ cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
2231
+
2232
+ cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2233
+ cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
2234
+
2235
+ output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
2236
+
2237
+ for (int i = 0; i < n_layer; ++i) {
2238
+ auto & layer = layers[i];
2239
+
2240
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
2241
+
2242
+ layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
2243
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
2244
+
2245
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
2246
+
2247
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
2248
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
2249
+ }
2250
+ } break;
2215
2251
case LLM_ARCH_JINA_BERT_V2:
2216
2252
{
2217
2253
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
@@ -6182,6 +6218,117 @@ struct llm_build_bert : public llm_graph_context {
6182
6218
}
6183
6219
};
6184
6220
6221
+ struct llm_build_neo_bert : public llm_graph_context {
6222
+ llm_build_neo_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
6223
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6224
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6225
+
6226
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6227
+
6228
+ ggml_tensor * cur;
6229
+ ggml_tensor * inpL;
6230
+ ggml_tensor * inp_pos = build_inp_pos();
6231
+
6232
+ // construct input embeddings (token, type, position)
6233
+ inpL = build_inp_embd(model.tok_embd);
6234
+ cb(inpL, "inp_embd", -1);
6235
+
6236
+ auto * inp_attn = build_attn_inp_no_cache();
6237
+
6238
+ // iterate layers
6239
+ for (int il = 0; il < n_layer; ++il) {
6240
+ ggml_tensor * cur = inpL;
6241
+
6242
+ ggml_tensor * Qcur;
6243
+ ggml_tensor * Kcur;
6244
+ ggml_tensor * Vcur;
6245
+
6246
+ // pre-norm
6247
+ cur = build_norm(inpL,
6248
+ model.layers[il].attn_norm, NULL,
6249
+ LLM_NORM_RMS, il);
6250
+
6251
+ // self-attention
6252
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
6253
+ cb(cur, "wqkv", il);
6254
+
6255
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
6256
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
6257
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
6258
+
6259
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
6260
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
6261
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
6262
+
6263
+ // RoPE
6264
+ Qcur = ggml_rope_ext(
6265
+ ctx0, Qcur, inp_pos, nullptr,
6266
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6267
+ ext_factor, attn_factor, beta_fast, beta_slow
6268
+ );
6269
+
6270
+ Kcur = ggml_rope_ext(
6271
+ ctx0, Kcur, inp_pos, nullptr,
6272
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
6273
+ ext_factor, attn_factor, beta_fast, beta_slow
6274
+ );
6275
+
6276
+ cb(Qcur, "Qcur", il);
6277
+ cb(Kcur, "Kcur", il);
6278
+ cb(Vcur, "Vcur", il);
6279
+
6280
+ cur = build_attn(inp_attn, gf,
6281
+ model.layers[il].wo, nullptr,
6282
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
6283
+ cb(cur, "kqv_out", il);
6284
+
6285
+ if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
6286
+ // skip computing output for unused tokens
6287
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
6288
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
6289
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
6290
+ }
6291
+
6292
+ // re-add the layer input
6293
+ cur = ggml_add(ctx0, cur, inpL);
6294
+
6295
+ ggml_tensor * ffn_inp = cur;
6296
+ cb(ffn_inp, "ffn_inp", il);
6297
+
6298
+ // pre-norm
6299
+ cur = build_norm(ffn_inp,
6300
+ model.layers[il].ffn_norm, NULL,
6301
+ LLM_NORM_RMS, il);
6302
+ cb(cur, "ffn_norm", il);
6303
+
6304
+ // feed-forward network
6305
+ cur = build_ffn(cur,
6306
+ model.layers[il].ffn_up,
6307
+ NULL, NULL, NULL, NULL, NULL,
6308
+ model.layers[il].ffn_down,
6309
+ NULL, NULL, NULL,
6310
+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
6311
+
6312
+ // attentions bypass the intermediate layer
6313
+ cur = ggml_add(ctx0, cur, ffn_inp);
6314
+
6315
+ // input for next layer
6316
+ inpL = cur;
6317
+ }
6318
+
6319
+ cur = inpL;
6320
+
6321
+ cur = build_norm(cur,
6322
+ model.output_norm_enc, NULL,
6323
+ LLM_NORM_RMS, -1);
6324
+
6325
+ cb(cur, "result_embd", -1);
6326
+ res->t_embd = cur;
6327
+
6328
+ ggml_build_forward_expand(gf, cur);
6329
+ }
6330
+ };
6331
+
6185
6332
struct llm_build_bloom : public llm_graph_context {
6186
6333
llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
6187
6334
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -13595,6 +13742,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
13595
13742
case LLM_ARCH_JINA_BERT_V2:
13596
13743
case LLM_ARCH_NOMIC_BERT:
13597
13744
case LLM_ARCH_NOMIC_BERT_MOE:
13745
+ case LLM_ARCH_NEO_BERT:
13598
13746
case LLM_ARCH_WAVTOKENIZER_DEC:
13599
13747
{
13600
13748
res = nullptr;
@@ -13703,6 +13851,10 @@ llm_graph_result_ptr llama_model::build_graph(
13703
13851
{
13704
13852
llm = std::make_unique<llm_build_bert>(*this, params, gf);
13705
13853
} break;
13854
+ case LLM_ARCH_NEO_BERT:
13855
+ {
13856
+ llm = std::make_unique<llm_build_neo_bert>(*this, params, gf);
13857
+ } break;
13706
13858
case LLM_ARCH_BLOOM:
13707
13859
{
13708
13860
llm = std::make_unique<llm_build_bloom>(*this, params, gf);
@@ -14082,6 +14234,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
14082
14234
case LLM_ARCH_GRANITE_MOE:
14083
14235
case LLM_ARCH_CHAMELEON:
14084
14236
case LLM_ARCH_BAILINGMOE:
14237
+ case LLM_ARCH_NEO_BERT:
14085
14238
case LLM_ARCH_ARCEE:
14086
14239
return LLAMA_ROPE_TYPE_NORM;
14087
14240
0 commit comments