Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions tests/system/small/ml/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,6 +417,7 @@ def test_llm_palm_score_params(llm_fine_tune_df_default_index):
)


@pytest.mark.flaky(retries=2)
@pytest.mark.parametrize(
"model_name",
(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,37 @@
class LogisticRegression(LinearClassifierMixin, BaseEstimator):
"""Logistic Regression (aka logit, MaxEnt) classifier.

>>> from bigframes.ml.linear_model import LogisticRegression
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> X = bpd.DataFrame({ \
"feature0": [20, 21, 19, 18], \
"feature1": [0, 1, 1, 0], \
"feature2": [0.2, 0.3, 0.4, 0.5]})
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
>>> # Create the LogisticRegression
>>> model = LogisticRegression()
>>> model.fit(X, y)
LogisticRegression()
>>> model.predict(X) # doctest:+SKIP
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
4 rows × 5 columns

[4 rows x 5 columns in total]

>>> # Score the model
>>> score = model.score(X, y)
>>> score # doctest:+SKIP
precision recall accuracy f1_score log_loss roc_auc
0 1.0 1.0 1.0 1.0 0.000004 1.0
1 rows × 6 columns

[1 rows x 6 columns in total]

Args:
optimize_strategy (str, default "auto_strategy"):
The strategy to train logistic regression models. Possible values are
Expand Down
Loading