Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions bigframes/bigquery/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import sys

from bigframes.bigquery._operations.ai import ai_generate_bool
from bigframes.bigquery._operations.approx_agg import approx_top_count
from bigframes.bigquery._operations.array import (
array_agg,
Expand Down Expand Up @@ -57,6 +58,8 @@
from bigframes.core import log_adapter

_functions = [
# ai ops
ai_generate_bool,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
ai_generate_bool,
ai,

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated. I'm not familiar with how docs are setup. Please take a look to make sure I get everything correct. Thanks!

# approximate aggregate ops
approx_top_count,
# array ops
Expand Down
165 changes: 165 additions & 0 deletions bigframes/bigquery/_operations/ai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import json
from typing import Any, List, Literal, Mapping, Tuple

from bigframes import clients, dtypes, series
from bigframes.operations import ai_ops


def ai_generate_bool(
prompt: series.Series | List[str | series.Series] | Tuple[str | series.Series, ...],
*,
connection_id: str | None = None,
endpoint: str | None = None,
request_type: Literal["dedicated", "shared", "unspecified"] = "unspecified",
model_params: Mapping[Any, Any] | None = None,
) -> series.Series:
"""
Returns the AI analysis based on the prompt, which can be any combination of text and unstructured data.
**Examples:**
>>> import bigframes.pandas as bpd
>>> import bigframes.bigquery as bbq
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame({
... "col_1": ["apple", "bear", "pear"],
... "col_2": ["fruit", "animal", "animal"]
... })
>>> bbq.ai_generate_bool((df["col_1"], " is a ", df["col_2"]))
0 {'result': True, 'full_response': '{"candidate...
1 {'result': True, 'full_response': '{"candidate...
2 {'result': False, 'full_response': '{"candidat...
dtype: struct<result: bool, full_response: string, status: string>[pyarrow]
>>> bbq.ai_generate_bool((df["col_1"], " is a ", df["col_2"])).struct.field("result")
0 True
1 True
2 False
Name: result, dtype: boolean
>>> model_params = {
... "generation_config": {
... "thinking_config": {
... "thinking_budget": 0
... }
... }
... }
>>> bbq.ai_generate_bool(
... (df["col_1"], " is a ", df["col_2"]),
... endpoint="gemini-2.5-pro",
... model_params=model_params,
... ).struct.field("result")
0 True
1 True
2 False
Name: result, dtype: boolean
Args:
prompt (series.Series | List[str|series.Series] | Tuple[str|series.Series, ...]):
A mixture of Series and string literals that specifies the prompt to send to the model.
connection_id (str, optional):
Specifies the connection to use to communicate with the model. For example, `myproject.us.myconnection`.
If not provided, the connection from the current session will be used.
endpoint (str, optional):
Specifies the Vertex AI endpoint to use for the model. For example `"gemini-2.5-flash"`. You can specify any
generally available or preview Gemini model. If you specify the model name, BigQuery ML automatically identifies and
uses the full endpoint of the model. If you don't specify an ENDPOINT value, BigQuery ML selects a recent stable
version of Gemini to use.
request_type (Literal["dedicated", "shared", "unspecified"]):
Specifies the type of inference request to send to the Gemini model. The request type determines what quota the request uses.
* "dedicated": function only uses Provisioned Throughput quota. The function returns the error Provisioned throughput is not
purchased or is not active if Provisioned Throughput quota isn't available.
* "shared": the function only uses dynamic shared quota (DSQ), even if you have purchased Provisioned Throughput quota.
* "unspecified": If you haven't purchased Provisioned Throughput quota, the function uses DSQ quota.
If you have purchased Provisioned Throughput quota, the function uses the Provisioned Throughput quota first.
If requests exceed the Provisioned Throughput quota, the overflow traffic uses DSQ quota.
model_params (Mapping[Any, Any]):
Provides additional parameters to the model. The MODEL_PARAMS value must conform to the generateContent request body format.
Returns:
bigframes.series.Series: A new struct Series with the result data. The struct contains these fields:
* "result": a BOOL value containing the model's response to the prompt. The result is None if the request fails or is filtered by responsible AI.
* "full_response": a STRING value containing the JSON response from the projects.locations.endpoints.generateContent call to the model.
The generated text is in the text element.
* "status": a STRING value that contains the API response status for the corresponding row. This value is empty if the operation was successful.
"""

prompt_context, series_list = _separate_context_and_series(prompt)
assert len(series_list) > 0

operator = ai_ops.AIGenerateBool(
prompt_context=tuple(prompt_context),
connection_id=_resolve_connection_id(series_list[0], connection_id),
endpoint=endpoint,
request_type=request_type,
model_params=json.dumps(model_params) if model_params else None,
)

return series_list[0]._apply_nary_op(operator, series_list[1:])


def _separate_context_and_series(
prompt: series.Series | List[str | series.Series] | Tuple[str | series.Series, ...],
) -> Tuple[List[str | None], List[series.Series]]:
"""
Returns the two values. The first value is the prompt with all series replaced by None. The second value is all the series
in the prompt. The original item order is kept.
For example:
Input: ("str1", series1, "str2", "str3", series2)
Output: ["str1", None, "str2", "str3", None], [series1, series2]
"""
if not isinstance(prompt, (list, tuple, series.Series)):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could we call the batch_convert_to_dataframe method https://github.com/googleapis/python-bigquery-dataframes/blob/main/bigframes/bigquery/_operations/search.py#L230 or similar here so that pandas objects are accepted too?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will do that in a separate PR.

raise ValueError(f"Unsupported prompt type: {type(prompt)}")

if isinstance(prompt, series.Series):
if prompt.dtype == dtypes.OBJ_REF_DTYPE:
# Multi-model support
return [None], [prompt.blob.read_url()]
return [None], [prompt]

prompt_context: List[str | None] = []
series_list: List[series.Series] = []

for item in prompt:
if isinstance(item, str):
prompt_context.append(item)

elif isinstance(item, series.Series):
prompt_context.append(None)

if item.dtype == dtypes.OBJ_REF_DTYPE:
# Multi-model support
item = item.blob.read_url()
series_list.append(item)

else:
raise TypeError(f"Unsupported type in prompt: {type(item)}")

if not series_list:
raise ValueError("Please provide at least one Series in the prompt")

return prompt_context, series_list


def _resolve_connection_id(series: series.Series, connection_id: str | None):
return clients.get_canonical_bq_connection_id(
connection_id or series._session._bq_connection,
series._session._project,
series._session._location,
)
26 changes: 26 additions & 0 deletions bigframes/core/compile/ibis_compiler/scalar_op_registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,10 @@
import functools
import typing

from bigframes_vendored import ibis
import bigframes_vendored.ibis.expr.api as ibis_api
import bigframes_vendored.ibis.expr.datatypes as ibis_dtypes
import bigframes_vendored.ibis.expr.operations.ai_ops as ai_ops
import bigframes_vendored.ibis.expr.operations.generic as ibis_generic
import bigframes_vendored.ibis.expr.operations.udf as ibis_udf
import bigframes_vendored.ibis.expr.types as ibis_types
Expand Down Expand Up @@ -1963,6 +1965,30 @@ def struct_op_impl(
return ibis_types.struct(data)


@scalar_op_compiler.register_nary_op(ops.AIGenerateBool, pass_op=True)
def ai_generate_bool(
*values: ibis_types.Value, op: ops.AIGenerateBool
) -> ibis_types.StructValue:

prompt: dict[str, ibis_types.Value | str] = {}
column_ref_idx = 0

for idx, elem in enumerate(op.prompt_context):
if elem is None:
prompt[f"_field_{idx + 1}"] = values[column_ref_idx]
column_ref_idx += 1
else:
prompt[f"_field_{idx + 1}"] = elem

return ai_ops.AIGenerateBool(
ibis.struct(prompt), # type: ignore
op.connection_id, # type: ignore
op.endpoint, # type: ignore
op.request_type.upper(), # type: ignore
op.model_params, # type: ignore
).to_expr()


@scalar_op_compiler.register_nary_op(ops.RowKey, pass_op=True)
def rowkey_op_impl(*values: ibis_types.Value, op: ops.RowKey) -> ibis_types.Value:
return bigframes.core.compile.default_ordering.gen_row_key(values)
Expand Down
3 changes: 3 additions & 0 deletions bigframes/operations/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

from __future__ import annotations

from bigframes.operations.ai_ops import AIGenerateBool
from bigframes.operations.array_ops import (
ArrayIndexOp,
ArrayReduceOp,
Expand Down Expand Up @@ -408,6 +409,8 @@
"geo_x_op",
"geo_y_op",
"GeoStDistanceOp",
# AI ops
"AIGenerateBool",
# Numpy ops mapping
"NUMPY_TO_BINOP",
"NUMPY_TO_OP",
Expand Down
47 changes: 47 additions & 0 deletions bigframes/operations/ai_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import dataclasses
from typing import ClassVar, Literal, Tuple

import pandas as pd
import pyarrow as pa

from bigframes import dtypes
from bigframes.operations import base_ops


@dataclasses.dataclass(frozen=True)
class AIGenerateBool(base_ops.NaryOp):
name: ClassVar[str] = "ai_generate_bool"

# None are the placeholders for column references.
prompt_context: Tuple[str | None, ...]
connection_id: str
endpoint: str | None
request_type: Literal["dedicated", "shared", "unspecified"]
model_params: str | None

def output_type(self, *input_types: dtypes.ExpressionType) -> dtypes.ExpressionType:
return pd.ArrowDtype(
pa.struct(
(
pa.field("result", pa.bool_()),
pa.field("full_response", pa.string()),
pa.field("status", pa.string()),
)
)
)
13 changes: 13 additions & 0 deletions tests/system/large/bigquery/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
35 changes: 35 additions & 0 deletions tests/system/large/bigquery/test_ai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pandas as pd
import pandas.testing

import bigframes.bigquery as bbq


def test_ai_generate_bool_multi_model(session):
df = session.from_glob_path(
"gs://bigframes-dev-testing/a_multimodel/images/*", name="image"
)

result = bbq.ai_generate_bool((df["image"], " contains an animal")).struct.field(
"result"
)

pandas.testing.assert_series_equal(
result.to_pandas(),
pd.Series([True, True, False, False, False], name="result"),
check_dtype=False,
check_index=False,
)
37 changes: 37 additions & 0 deletions tests/system/small/bigquery/test_ai.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pandas as pd
import pandas.testing

import bigframes.bigquery as bbq
import bigframes.pandas as bpd


def test_ai_generate_bool(session):
s1 = bpd.Series(["apple", "bear"], session=session)
s2 = bpd.Series(["fruit", "tree"], session=session)
prompt = (s1, " is a ", s2)
model_params = {"generation_config": {"thinking_config": {"thinking_budget": 0}}}

result = bbq.ai_generate_bool(
prompt, endpoint="gemini-2.5-flash", model_params=model_params
).struct.field("result")

pandas.testing.assert_series_equal(
result.to_pandas(),
pd.Series([True, False], name="result"),
check_dtype=False,
check_index=False,
)
Original file line number Diff line number Diff line change
Expand Up @@ -1104,6 +1104,21 @@ def visit_StringAgg(self, op, *, arg, sep, order_by, where):
expr = arg
return self.agg.string_agg(expr, sep, where=where)

def visit_AIGenerateBool(self, op, **kwargs):
func_name = "AI.GENERATE_BOOL"

args = []
for key, val in kwargs.items():
if val is None:
continue

if key == "model_params":
val = sge.JSON(this=val)

args.append(sge.Kwarg(this=sge.Identifier(this=key), expression=val))

return sge.func(func_name, *args)

def visit_FirstNonNullValue(self, op, *, arg):
return sge.IgnoreNulls(this=sge.FirstValue(this=arg))

Expand Down
Loading