|
| 1 | +package partition |
| 2 | + |
| 3 | +import ( |
| 4 | + "container/heap" |
| 5 | + "math/bits" |
| 6 | + |
| 7 | + "github.com/hmdsefi/gograph" |
| 8 | +) |
| 9 | + |
| 10 | +// MaximalCliques finds all maximal cliques in the input graph using the |
| 11 | +// Bron–Kerbosch algorithm with pivot selection, degeneracy ordering, and bitsets. |
| 12 | +// |
| 13 | +// A **clique** is a subset of vertices where every two distinct vertices are |
| 14 | +// connected by an edge. A **maximal clique** is a clique that cannot be extended |
| 15 | +// by adding another adjacent vertex. |
| 16 | +// |
| 17 | +// This implementation is optimized for performance: |
| 18 | +// 1. **Degeneracy ordering**: processes vertices in a specific order to reduce |
| 19 | +// recursive calls and improve efficiency. |
| 20 | +// 2. **Pivot selection**: selects a pivot vertex at each recursive call to |
| 21 | +// reduce the number of branches. |
| 22 | +// 3. **Bitsets**: represents candidate sets (P, X) efficiently using []uint64 |
| 23 | +// to speed up set operations on large graphs. |
| 24 | +// |
| 25 | +// Parameters: |
| 26 | +// - g: a gograph.Graph[T] representing the graph. T must be a comparable type. |
| 27 | +// Each vertex in the graph can be accessed via g.GetAllVertices() and |
| 28 | +// neighbors via Vertex.Neighbors(). |
| 29 | +// |
| 30 | +// Returns: |
| 31 | +// - [][]*gograph.Vertex[T]: a slice of maximal cliques. Each clique is a slice |
| 32 | +// of pointers to Vertex[T]. Vertices in a clique are guaranteed to be fully |
| 33 | +// connected, and no clique is a subset of another. |
| 34 | +// |
| 35 | +// Complexity: |
| 36 | +// - **Time Complexity**: O(3^(n/3)) in the worst case for general graphs, |
| 37 | +// where n is the number of vertices. This is the known bound for enumerating |
| 38 | +// all maximal cliques. In practice, degeneracy ordering + pivoting reduces |
| 39 | +// the number of recursive calls significantly on sparse graphs. |
| 40 | +// - **Space Complexity**: O(n^2 / 64) for bitsets plus O(k*n) for storing cliques, |
| 41 | +// where k is the number of maximal cliques. Additional recursion stack space |
| 42 | +// is O(n) in depth. |
| 43 | +// |
| 44 | +// Example usage: |
| 45 | +// |
| 46 | +// g := gograph.New[string]() |
| 47 | +// a := g.AddVertexByLabel("A") |
| 48 | +// b := g.AddVertexByLabel("B") |
| 49 | +// c := g.AddVertexByLabel("C") |
| 50 | +// _, _ = g.AddEdge(a, b) |
| 51 | +// _, _ = g.AddEdge(b, c) |
| 52 | +// _, _ = g.AddEdge(c, a) |
| 53 | +// |
| 54 | +// cliques := MaximalCliques(g) |
| 55 | +// for _, clique := range cliques { |
| 56 | +// for _, v := range clique { |
| 57 | +// fmt.Print(v.Label(), " ") |
| 58 | +// } |
| 59 | +// fmt.Println() |
| 60 | +// } |
| 61 | +// |
| 62 | +// Notes: |
| 63 | +// - The function returns the actual Vertex pointers from the input graph; |
| 64 | +// do not modify the vertices while iterating the results. |
| 65 | +// - The order of cliques or vertices within a clique is not guaranteed. |
| 66 | +// If deterministic ordering is required, use a normalization function |
| 67 | +// (e.g., sort by vertex label). |
| 68 | +func MaximalCliques[T comparable](g gograph.Graph[T]) [][]*gograph.Vertex[T] { |
| 69 | + vertices := g.GetAllVertices() |
| 70 | + n := len(vertices) |
| 71 | + if n == 0 { |
| 72 | + return nil |
| 73 | + } |
| 74 | + |
| 75 | + // label -> index |
| 76 | + indexOf := make(map[T]int, n) |
| 77 | + for i, v := range vertices { |
| 78 | + indexOf[v.Label()] = i |
| 79 | + } |
| 80 | + |
| 81 | + // adjacency list (indices) and adjacency bitsets |
| 82 | + adj := make([][]int, n) |
| 83 | + neighborsBits := make([][]uint64, n) |
| 84 | + words := wordLen(n) |
| 85 | + for i := 0; i < n; i++ { |
| 86 | + neighborsBits[i] = make([]uint64, words) |
| 87 | + } |
| 88 | + |
| 89 | + for i, v := range vertices { |
| 90 | + for _, nb := range v.Neighbors() { |
| 91 | + if j, ok := indexOf[nb.Label()]; ok { |
| 92 | + adj[i] = append(adj[i], j) |
| 93 | + setBit(neighborsBits[i], j) |
| 94 | + } |
| 95 | + } |
| 96 | + } |
| 97 | + |
| 98 | + // degeneracy ordering (returns vertices removed low-degree first) |
| 99 | + order := degeneracyOrder(adj, n) |
| 100 | + |
| 101 | + // posInOrder: index -> position in order (used to split neighbors into P/X) |
| 102 | + posInOrder := make([]int, n) |
| 103 | + for pos, idx := range order { |
| 104 | + posInOrder[idx] = pos |
| 105 | + } |
| 106 | + |
| 107 | + // We'll collect cliques as slices of int indices first |
| 108 | + var cliquesIdx [][]int |
| 109 | + // scratch P/X for top-level calls |
| 110 | + P := make([]uint64, words) |
| 111 | + X := make([]uint64, words) |
| 112 | + |
| 113 | + // For each vertex v in degeneracy order: |
| 114 | + for _, v := range order { |
| 115 | + // reset P and X |
| 116 | + for i := range P { |
| 117 | + P[i] = 0 |
| 118 | + X[i] = 0 |
| 119 | + } |
| 120 | + // Build P = N(v) ∩ {vertices after v in order} |
| 121 | + // Build X = N(v) ∩ {vertices before v in order} |
| 122 | + for _, w := range adj[v] { |
| 123 | + if posInOrder[w] > posInOrder[v] { |
| 124 | + setBit(P, w) |
| 125 | + } else { |
| 126 | + setBit(X, w) |
| 127 | + } |
| 128 | + } |
| 129 | + |
| 130 | + // Recurse with R = {v}, cloned P and X |
| 131 | + bronKerboschPivot([]int{v}, cloneBitset(P), cloneBitset(X), neighborsBits, n, &cliquesIdx) |
| 132 | + |
| 133 | + // remove v implicitly (degeneracy ensures no duplicates) |
| 134 | + } |
| 135 | + |
| 136 | + // convert index cliques to []*Vertex[T] |
| 137 | + result := make([][]*gograph.Vertex[T], len(cliquesIdx)) |
| 138 | + for i, cl := range cliquesIdx { |
| 139 | + out := make([]*gograph.Vertex[T], len(cl)) |
| 140 | + for j, idx := range cl { |
| 141 | + out[j] = vertices[idx] |
| 142 | + } |
| 143 | + result[i] = out |
| 144 | + } |
| 145 | + return result |
| 146 | +} |
| 147 | + |
| 148 | +func wordLen(n int) int { return (n + 63) >> 6 } |
| 149 | + |
| 150 | +func setBit(b []uint64, i int) { |
| 151 | + b[i>>6] |= 1 << i & 63 |
| 152 | +} |
| 153 | + |
| 154 | +func clearBit(b []uint64, i int) { |
| 155 | + b[i>>6] &^= 1 << i & 63 |
| 156 | +} |
| 157 | + |
| 158 | +func cloneBitset(b []uint64) []uint64 { |
| 159 | + if b == nil { |
| 160 | + return nil |
| 161 | + } |
| 162 | + c := make([]uint64, len(b)) |
| 163 | + copy(c, b) |
| 164 | + return c |
| 165 | +} |
| 166 | + |
| 167 | +func intersectBitset(a, b []uint64) []uint64 { |
| 168 | + n := len(a) |
| 169 | + if len(b) < n { |
| 170 | + n = len(b) |
| 171 | + } |
| 172 | + res := make([]uint64, n) |
| 173 | + for i := 0; i < n; i++ { |
| 174 | + res[i] = a[i] & b[i] |
| 175 | + } |
| 176 | + return res |
| 177 | +} |
| 178 | + |
| 179 | +func differenceBitset(a, b []uint64) []uint64 { |
| 180 | + n := len(a) |
| 181 | + res := make([]uint64, n) |
| 182 | + for i := 0; i < n; i++ { |
| 183 | + var bi uint64 |
| 184 | + if i < len(b) { |
| 185 | + bi = b[i] |
| 186 | + } |
| 187 | + res[i] = a[i] &^ bi |
| 188 | + } |
| 189 | + return res |
| 190 | +} |
| 191 | + |
| 192 | +func unionBitset(a, b []uint64) []uint64 { |
| 193 | + n := len(a) |
| 194 | + if len(b) > n { |
| 195 | + n = len(b) |
| 196 | + } |
| 197 | + res := make([]uint64, n) |
| 198 | + for i := 0; i < n; i++ { |
| 199 | + var ai, bi uint64 |
| 200 | + if i < len(a) { |
| 201 | + ai = a[i] |
| 202 | + } |
| 203 | + if i < len(b) { |
| 204 | + bi = b[i] |
| 205 | + } |
| 206 | + res[i] = ai | bi |
| 207 | + } |
| 208 | + return res |
| 209 | +} |
| 210 | + |
| 211 | +func countBits(b []uint64) int { |
| 212 | + c := 0 |
| 213 | + for _, w := range b { |
| 214 | + c += bits.OnesCount64(w) |
| 215 | + } |
| 216 | + return c |
| 217 | +} |
| 218 | + |
| 219 | +// forEachSetBit calls fn(i) for every set bit in the bitset b. |
| 220 | +// If fn returns true, iteration stops early. |
| 221 | +func forEachSetBit(b []uint64, fn func(idx int) (stop bool)) { |
| 222 | + for wi, word := range b { |
| 223 | + for word != 0 { |
| 224 | + t := bits.TrailingZeros64(word) |
| 225 | + idx := (wi << 6) + t |
| 226 | + if fn(idx) { |
| 227 | + return |
| 228 | + } |
| 229 | + |
| 230 | + // clear the least significant set bit |
| 231 | + word &= word - 1 |
| 232 | + } |
| 233 | + } |
| 234 | +} |
| 235 | + |
| 236 | +// --------------------- |
| 237 | +// Degeneracy ordering (min-heap approach) |
| 238 | +// --------------------- |
| 239 | + |
| 240 | +type heapItem struct { |
| 241 | + deg int |
| 242 | + v int |
| 243 | + // idx field not necessary for this simple push-new-updates approach |
| 244 | +} |
| 245 | +type minHeap []heapItem |
| 246 | + |
| 247 | +func (h minHeap) Len() int { return len(h) } |
| 248 | +func (h minHeap) Less(i, j int) bool { return h[i].deg < h[j].deg } |
| 249 | +func (h minHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } |
| 250 | + |
| 251 | +func (h *minHeap) Push(x interface{}) { |
| 252 | + *h = append(*h, x.(heapItem)) // nolint |
| 253 | +} |
| 254 | + |
| 255 | +func (h *minHeap) Pop() interface{} { |
| 256 | + old := *h |
| 257 | + n := len(old) |
| 258 | + x := old[n-1] |
| 259 | + *h = old[:n-1] |
| 260 | + return x |
| 261 | +} |
| 262 | + |
| 263 | +// degeneracyOrder returns an ordering of vertex indices (low-degree first removed). |
| 264 | +func degeneracyOrder(adj [][]int, n int) []int { |
| 265 | + deg := make([]int, n) |
| 266 | + for i := 0; i < n; i++ { |
| 267 | + deg[i] = len(adj[i]) |
| 268 | + } |
| 269 | + |
| 270 | + h := &minHeap{} |
| 271 | + heap.Init(h) |
| 272 | + for i := 0; i < n; i++ { |
| 273 | + heap.Push(h, heapItem{deg: deg[i], v: i}) |
| 274 | + } |
| 275 | + |
| 276 | + removed := make([]bool, n) |
| 277 | + order := make([]int, 0, n) |
| 278 | + |
| 279 | + for h.Len() > 0 { |
| 280 | + it := heap.Pop(h).(heapItem) // nolint |
| 281 | + v := it.v |
| 282 | + // skip outdated entries (we push updated degs rather than decrease-key) |
| 283 | + if removed[v] { |
| 284 | + continue |
| 285 | + } |
| 286 | + removed[v] = true |
| 287 | + order = append(order, v) |
| 288 | + for _, w := range adj[v] { |
| 289 | + if removed[w] { |
| 290 | + continue |
| 291 | + } |
| 292 | + deg[w]-- |
| 293 | + heap.Push(h, heapItem{deg: deg[w], v: w}) |
| 294 | + } |
| 295 | + } |
| 296 | + |
| 297 | + return order |
| 298 | +} |
| 299 | + |
| 300 | +// bronKerboschPivot does recursion; neighborsBits is adjacency bitset per vertex. |
| 301 | +// n is number of vertices (for word sizes and potential masking if needed). |
| 302 | +func bronKerboschPivot( |
| 303 | + r []int, |
| 304 | + p []uint64, |
| 305 | + x []uint64, |
| 306 | + neighborsBits [][]uint64, |
| 307 | + n int, // nolint |
| 308 | + cliques *[][]int, |
| 309 | +) { |
| 310 | + // if P and X are empty → R is maximal |
| 311 | + if countBits(p) == 0 && countBits(x) == 0 { |
| 312 | + c := make([]int, len(r)) |
| 313 | + copy(c, r) |
| 314 | + *cliques = append(*cliques, c) |
| 315 | + return |
| 316 | + } |
| 317 | + |
| 318 | + // choose pivot u from P ∪ X maximizing |P ∩ N(u)| |
| 319 | + unionPX := unionBitset(p, x) |
| 320 | + u := -1 |
| 321 | + best := -1 |
| 322 | + forEachSetBit( |
| 323 | + unionPX, func(idx int) bool { |
| 324 | + // compute |P ∩ N(idx)| |
| 325 | + cnt := countBits(intersectBitset(p, neighborsBits[idx])) |
| 326 | + if cnt > best { |
| 327 | + best = cnt |
| 328 | + u = idx |
| 329 | + } |
| 330 | + return false |
| 331 | + }, |
| 332 | + ) |
| 333 | + |
| 334 | + // candidates = P \ N(u) |
| 335 | + var candidates []uint64 |
| 336 | + if u >= 0 { |
| 337 | + candidates = differenceBitset(p, neighborsBits[u]) |
| 338 | + } else { |
| 339 | + candidates = cloneBitset(p) |
| 340 | + } |
| 341 | + |
| 342 | + // iterate over set bits in candidates |
| 343 | + // We must iterate over a snapshot (indices) because we'll mutate P/X during loop. |
| 344 | + var candidateIndices []int |
| 345 | + forEachSetBit( |
| 346 | + candidates, func(idx int) bool { |
| 347 | + candidateIndices = append(candidateIndices, idx) |
| 348 | + return false |
| 349 | + }, |
| 350 | + ) |
| 351 | + |
| 352 | + for _, v := range candidateIndices { |
| 353 | + // R' = R ∪ {v} |
| 354 | + Rp := append(r, v) // nolint |
| 355 | + |
| 356 | + // P' = P ∩ N(v) |
| 357 | + Pp := intersectBitset(p, neighborsBits[v]) |
| 358 | + |
| 359 | + // X' = X ∩ N(v) |
| 360 | + Xp := intersectBitset(x, neighborsBits[v]) |
| 361 | + |
| 362 | + // recurse |
| 363 | + bronKerboschPivot(Rp, Pp, Xp, neighborsBits, n, cliques) |
| 364 | + |
| 365 | + // move v from P to X in the current frame |
| 366 | + clearBit(p, v) |
| 367 | + setBit(x, v) |
| 368 | + } |
| 369 | +} |
0 commit comments