|
| 1 | +import argparse |
| 2 | +import os |
| 3 | + |
| 4 | +import torch |
| 5 | + |
| 6 | +from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, Transformer2DModel |
| 7 | +from torchvision.datasets.utils import download_url |
| 8 | + |
| 9 | + |
| 10 | +pretrained_models = {512: "DiT-XL-2-512x512.pt", 256: "DiT-XL-2-256x256.pt"} |
| 11 | + |
| 12 | + |
| 13 | +def download_model(model_name): |
| 14 | + """ |
| 15 | + Downloads a pre-trained DiT model from the web. |
| 16 | + """ |
| 17 | + local_path = f"pretrained_models/{model_name}" |
| 18 | + if not os.path.isfile(local_path): |
| 19 | + os.makedirs("pretrained_models", exist_ok=True) |
| 20 | + web_path = f"https://dl.fbaipublicfiles.com/DiT/models/{model_name}" |
| 21 | + download_url(web_path, "pretrained_models") |
| 22 | + model = torch.load(local_path, map_location=lambda storage, loc: storage) |
| 23 | + return model |
| 24 | + |
| 25 | + |
| 26 | +def main(args): |
| 27 | + state_dict = download_model(pretrained_models[args.image_size]) |
| 28 | + |
| 29 | + state_dict["pos_embed.proj.weight"] = state_dict["x_embedder.proj.weight"] |
| 30 | + state_dict["pos_embed.proj.bias"] = state_dict["x_embedder.proj.bias"] |
| 31 | + state_dict.pop("x_embedder.proj.weight") |
| 32 | + state_dict.pop("x_embedder.proj.bias") |
| 33 | + |
| 34 | + for depth in range(28): |
| 35 | + state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.weight"] = state_dict[ |
| 36 | + "t_embedder.mlp.0.weight" |
| 37 | + ] |
| 38 | + state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_1.bias"] = state_dict[ |
| 39 | + "t_embedder.mlp.0.bias" |
| 40 | + ] |
| 41 | + state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.weight"] = state_dict[ |
| 42 | + "t_embedder.mlp.2.weight" |
| 43 | + ] |
| 44 | + state_dict[f"transformer_blocks.{depth}.norm1.emb.timestep_embedder.linear_2.bias"] = state_dict[ |
| 45 | + "t_embedder.mlp.2.bias" |
| 46 | + ] |
| 47 | + state_dict[f"transformer_blocks.{depth}.norm1.emb.class_embedder.embedding_table.weight"] = state_dict[ |
| 48 | + "y_embedder.embedding_table.weight" |
| 49 | + ] |
| 50 | + |
| 51 | + state_dict[f"transformer_blocks.{depth}.norm1.linear.weight"] = state_dict[ |
| 52 | + f"blocks.{depth}.adaLN_modulation.1.weight" |
| 53 | + ] |
| 54 | + state_dict[f"transformer_blocks.{depth}.norm1.linear.bias"] = state_dict[ |
| 55 | + f"blocks.{depth}.adaLN_modulation.1.bias" |
| 56 | + ] |
| 57 | + |
| 58 | + q, k, v = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.weight"], 3, dim=0) |
| 59 | + q_bias, k_bias, v_bias = torch.chunk(state_dict[f"blocks.{depth}.attn.qkv.bias"], 3, dim=0) |
| 60 | + |
| 61 | + state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q |
| 62 | + state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias |
| 63 | + state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k |
| 64 | + state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias |
| 65 | + state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v |
| 66 | + state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias |
| 67 | + |
| 68 | + state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict[ |
| 69 | + f"blocks.{depth}.attn.proj.weight" |
| 70 | + ] |
| 71 | + state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict[f"blocks.{depth}.attn.proj.bias"] |
| 72 | + |
| 73 | + state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict[f"blocks.{depth}.mlp.fc1.weight"] |
| 74 | + state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict[f"blocks.{depth}.mlp.fc1.bias"] |
| 75 | + state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict[f"blocks.{depth}.mlp.fc2.weight"] |
| 76 | + state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict[f"blocks.{depth}.mlp.fc2.bias"] |
| 77 | + |
| 78 | + state_dict.pop(f"blocks.{depth}.attn.qkv.weight") |
| 79 | + state_dict.pop(f"blocks.{depth}.attn.qkv.bias") |
| 80 | + state_dict.pop(f"blocks.{depth}.attn.proj.weight") |
| 81 | + state_dict.pop(f"blocks.{depth}.attn.proj.bias") |
| 82 | + state_dict.pop(f"blocks.{depth}.mlp.fc1.weight") |
| 83 | + state_dict.pop(f"blocks.{depth}.mlp.fc1.bias") |
| 84 | + state_dict.pop(f"blocks.{depth}.mlp.fc2.weight") |
| 85 | + state_dict.pop(f"blocks.{depth}.mlp.fc2.bias") |
| 86 | + state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.weight") |
| 87 | + state_dict.pop(f"blocks.{depth}.adaLN_modulation.1.bias") |
| 88 | + |
| 89 | + state_dict.pop("t_embedder.mlp.0.weight") |
| 90 | + state_dict.pop("t_embedder.mlp.0.bias") |
| 91 | + state_dict.pop("t_embedder.mlp.2.weight") |
| 92 | + state_dict.pop("t_embedder.mlp.2.bias") |
| 93 | + state_dict.pop("y_embedder.embedding_table.weight") |
| 94 | + |
| 95 | + state_dict["proj_out_1.weight"] = state_dict["final_layer.adaLN_modulation.1.weight"] |
| 96 | + state_dict["proj_out_1.bias"] = state_dict["final_layer.adaLN_modulation.1.bias"] |
| 97 | + state_dict["proj_out_2.weight"] = state_dict["final_layer.linear.weight"] |
| 98 | + state_dict["proj_out_2.bias"] = state_dict["final_layer.linear.bias"] |
| 99 | + |
| 100 | + state_dict.pop("final_layer.linear.weight") |
| 101 | + state_dict.pop("final_layer.linear.bias") |
| 102 | + state_dict.pop("final_layer.adaLN_modulation.1.weight") |
| 103 | + state_dict.pop("final_layer.adaLN_modulation.1.bias") |
| 104 | + |
| 105 | + # DiT XL/2 |
| 106 | + transformer = Transformer2DModel( |
| 107 | + sample_size=args.image_size // 8, |
| 108 | + num_layers=28, |
| 109 | + attention_head_dim=72, |
| 110 | + in_channels=4, |
| 111 | + out_channels=8, |
| 112 | + patch_size=2, |
| 113 | + attention_bias=True, |
| 114 | + num_attention_heads=16, |
| 115 | + activation_fn="gelu-approximate", |
| 116 | + num_embeds_ada_norm=1000, |
| 117 | + norm_type="ada_norm_zero", |
| 118 | + norm_elementwise_affine=False, |
| 119 | + ) |
| 120 | + transformer.load_state_dict(state_dict, strict=True) |
| 121 | + |
| 122 | + scheduler = DDIMScheduler( |
| 123 | + num_train_timesteps=1000, |
| 124 | + beta_schedule="linear", |
| 125 | + prediction_type="epsilon", |
| 126 | + clip_sample=False, |
| 127 | + ) |
| 128 | + |
| 129 | + vae = AutoencoderKL.from_pretrained(args.vae_model) |
| 130 | + |
| 131 | + pipeline = DiTPipeline(transformer=transformer, vae=vae, scheduler=scheduler) |
| 132 | + |
| 133 | + if args.save: |
| 134 | + pipeline.save_pretrained(args.checkpoint_path) |
| 135 | + |
| 136 | + |
| 137 | +if __name__ == "__main__": |
| 138 | + parser = argparse.ArgumentParser() |
| 139 | + |
| 140 | + parser.add_argument( |
| 141 | + "--image_size", |
| 142 | + default=256, |
| 143 | + type=int, |
| 144 | + required=False, |
| 145 | + help="Image size of pretrained model, either 256 or 512.", |
| 146 | + ) |
| 147 | + parser.add_argument( |
| 148 | + "--vae_model", |
| 149 | + default="stabilityai/sd-vae-ft-ema", |
| 150 | + type=str, |
| 151 | + required=False, |
| 152 | + help="Path to pretrained VAE model, either stabilityai/sd-vae-ft-mse or stabilityai/sd-vae-ft-ema.", |
| 153 | + ) |
| 154 | + parser.add_argument( |
| 155 | + "--save", default=True, type=bool, required=False, help="Whether to save the converted pipeline or not." |
| 156 | + ) |
| 157 | + parser.add_argument( |
| 158 | + "--checkpoint_path", default=None, type=str, required=True, help="Path to the output pipeline." |
| 159 | + ) |
| 160 | + |
| 161 | + args = parser.parse_args() |
| 162 | + main(args) |
0 commit comments