diff --git a/course/fr/chapter10/section2.ipynb b/course/fr/chapter10/section2.ipynb new file mode 100644 index 00000000..f7dd5431 --- /dev/null +++ b/course/fr/chapter10/section2.ipynb @@ -0,0 +1,65 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "kK8kfIfqrgrc" + }, + "source": [ + "# Configurez votre instance Argilla" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "cGOYFrYyrgrd" + }, + "outputs": [], + "source": [ + "!pip install argilla" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mWB23rrFrgrf" + }, + "outputs": [], + "source": [ + "import argilla as rg\n", + "\n", + "HF_TOKEN = \"...\" # uniquement pour les spaces privés\n", + "\n", + "client = rg.Argilla(\n", + " api_url=\"...\",\n", + " api_key=\"...\",\n", + " headers={\"Authorization\": f\"Bearer {HF_TOKEN}\"}, # uniquement pour les spaces privés\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UVHJPCFKrgrg" + }, + "outputs": [], + "source": [ + "client.me" + ] + } + ], + "metadata": { + "colab": { + "name": "Set up your Argilla instance", + "provenance": [] + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/course/fr/chapter10/section3.ipynb b/course/fr/chapter10/section3.ipynb new file mode 100644 index 00000000..48a2a5d0 --- /dev/null +++ b/course/fr/chapter10/section3.ipynb @@ -0,0 +1,115 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chargez votre jeu de données dans Argilla" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install argilla datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import argilla as rg\n", + "\n", + "HF_TOKEN = \"...\" # uniquement pour les spaces privés\n", + "\n", + "client = rg.Argilla(\n", + " api_url=\"...\",\n", + " api_key=\"...\",\n", + " headers={\"Authorization\": f\"Bearer {HF_TOKEN}\"}, # uniquement pour les spaces privés\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'text': Value(dtype='string', id=None),\n", + " 'label': Value(dtype='int64', id=None),\n", + " 'label_text': Value(dtype='string', id=None)}" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from datasets import load_dataset\n", + "\n", + "data = load_dataset(\"SetFit/ag_news\", split=\"train\")\n", + "data.features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "settings = rg.Settings(\n", + " fields=[rg.TextField(name=\"text\")],\n", + " questions=[\n", + " rg.LabelQuestion(\n", + " name=\"label\", title=\"Classifier le texte :\", labels=data.unique(\"label_text\")\n", + " ),\n", + " rg.SpanQuestion(\n", + " name=\"entities\",\n", + " title=\"Surligner toutes les entités présentes dans le texte :\",\n", + " labels=[\"PERSON\", \"ORG\", \"LOC\", \"EVENT\"],\n", + " field=\"text\",\n", + " ),\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = rg.Dataset(name=\"ag_news\", settings=settings)\n", + "\n", + "dataset.create()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset.records.log(data, mapping={\"label_text\": \"label\"})" + ] + } + ], + "metadata": { + "colab": { + "name": "Load your dataset to Argilla", + "provenance": [] + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/course/fr/chapter10/section5.ipynb b/course/fr/chapter10/section5.ipynb new file mode 100644 index 00000000..b2747a79 --- /dev/null +++ b/course/fr/chapter10/section5.ipynb @@ -0,0 +1,95 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Utilisez votre jeu de données annoté" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install argilla" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import argilla as rg\n", + "\n", + "HF_TOKEN = \"...\" # uniquement pour les spaces privés\n", + "\n", + "client = rg.Argilla(\n", + " api_url=\"...\",\n", + " api_key=\"...\",\n", + " headers={\"Authorization\": f\"Bearer {HF_TOKEN}\"}, # uniquement pour les spaces privés\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = client.datasets(name=\"ag_news\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "status_filter = rg.Query(filter=rg.Filter([(\"status\", \"==\", \"completed\")]))\n", + "\n", + "filtered_records = dataset.records(status_filter)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "filtered_records.to_datasets().push_to_hub(\"argilla/ag_news_annotated\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset.to_hub(repo_id=\"argilla/ag_news_annotated\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dataset = rg.Dataset.from_hub(repo_id=\"argilla/ag_news_annotated\")" + ] + } + ], + "metadata": { + "colab": { + "name": "Use your annotated dataset", + "provenance": [] + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/course/fr/chapter11/section2.ipynb b/course/fr/chapter11/section2.ipynb new file mode 100644 index 00000000..d3f33b61 --- /dev/null +++ b/course/fr/chapter11/section2.ipynb @@ -0,0 +1,5739 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "vZAvFVIAtFlq" + }, + "source": [ + "# Explorer les gabarits de chat avec SmolLM2\n", + "\n", + "Ce *notebook* montre comment utiliser les gabarits de chat avec le modèle `SmolLM2`. Les gabarits de chat permettent de structurer les interactions entre les utilisateurs et les modèles d'IA, en garantissant des réponses cohérentes et adaptées au contexte." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K-lZu8JvtwUN", + "outputId": "c3871418-15bc-4265-ae8d-6d6036036d0e" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c15d320002504d95bb86e87f50d43b08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HTML(value='
user\n", + "Hello, how are you?<|im_end|>\n", + "<|im_start|>assistant\n", + "I'm doing well, thank you! How can I assist you today?<|im_end|>\n", + "\n" + ] + } + ], + "source": [ + "input_text = tokenizer.apply_chat_template(messages, tokenize=False)\n", + "\n", + "print(\"Conversation with template:\", input_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sfvdglOqtFls" + }, + "source": [ + "# Décoder la conversation\n", + "\n", + "Notez que la conversation est représentée comme ci-dessus, mais avec un message d'assistant supplémentaire." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mXUVdPeytFls", + "outputId": "80870e53-7bc1-426e-ac33-ba6748e030fc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Conversation decoded: <|im_start|>user\n", + "Hello, how are you?<|im_end|>\n", + "<|im_start|>assistant\n", + "I'm doing well, thank you! How can I assist you today?<|im_end|>\n", + "<|im_start|>assistant\n", + "\n" + ] + } + ], + "source": [ + "input_text = tokenizer.apply_chat_template(\n", + " messages, tokenize=True, add_generation_prompt=True\n", + ")\n", + "\n", + "print(\"Conversation decoded:\", tokenizer.decode(token_ids=input_text))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UcZQpspEtFlt" + }, + "source": [ + "# Tokeniser la conversation\n", + "\n", + "Bien sûr, le *tokenizer* tokenise également la conversation et le *token* spécial en tant qu'identifiants liés au vocabulaire du modèle.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jc2PLxAMtFlt", + "outputId": "d2098780-b3f4-41ec-a1f3-b6da2b593c62" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Conversation tokenized: [1, 4093, 198, 19556, 28, 638, 359, 346, 47, 2, 198, 1, 520, 9531, 198, 57, 5248, 2567, 876, 28, 9984, 346, 17, 1073, 416, 339, 4237, 346, 1834, 47, 2, 198, 1, 520, 9531, 198]\n" + ] + } + ], + "source": [ + "input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)\n", + "\n", + "print(\"Conversation tokenized:\", input_text)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m3eNp9a0tFlt" + }, + "source": [ + "
\n", + "

Exercice : Traitement d'un jeu de données pour faire un SFT

\n", + "

Prenez un jeu de données disponible sur le Hub d'Hugging Face et traitez-le pour pouvoir l'utiliser sur du SFT.

\n", + "

Niveaux de difficulté

\n", + "

🐢 Convertit le jeu de données `HuggingFaceTB/smoltalk` au format chatml.

\n", + "

🐕 Convertit le jeu de données `openai/gsm8k` au format chatml.

\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 381 + }, + "id": "qbkXV2_ItFlt", + "outputId": "06deadc3-2c63-4660-d2bd-05096ef07c9f" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.core.display import display, HTML\n", + "\n", + "display(\n", + " HTML(\n", + " \"\"\"\n", + "\"\"\"\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241, + "referenced_widgets": [ + "c2d74a42fb574b8892d0a288fd92f0a6", + "056b9ef5706843b19cd62fce75743afb", + "17b4d81e40564a53bb79be9fbef4918e", + "951f60cddcb84dfdbbdf2058369f0541", + "646484cf7a36444daebe1dfe4a0e4150", + "e2f0c39ce1c046e8acb150dfbfaf5aa8", + "7eb12d70d2b542a7b651c7680f590279", + "ea1f9cb22abf4e7d9f6e76fc86c03387", + "00c9f5ca71b84df4b26acee72c97fefb", + "505f96bc0c7843bcb1498ba1c1ba5f06", + "635cc2881a1e4b8788bb26c356740e04", + "a6ee323c13904525a99c6f092ba96e18", + "67fffe7d6f8c4963972b408529e05532", + "0055b6b628934affaf88bc58a1572bb6", + "aafbbb9fc5164fa3a88193bfd33d2f79", + "606e39d53ed64967a60337418c71c595", + "26b15fa18b1b4963a1ba76a76675e7ee", + "db09ab1f79db4f3a8de77f0348eca0f7", + "de04f344a8d4428e8ba1836a563d8aa1", + "03c09673186046d799d6f487d6623e6b", + "1cc682330b24431b8812c73041e987d0", + "dafe748a452148038779f6a62a22a4ec", + "addad1c100024c44a0959978153da9a8", + "9bea2a23db644ad19b708d10e35d54ee", + "d1174b127571420593971166fbb1966b", + "add90ed3746d4293a1b71198137a892c", + "8def25e6389f4e6192b517b6e80aa05e", + "c9747e7a810f413ba1ea108307e3ad1d", + "d0ea49d1d90f4d34bf2ae70efa96946e", + "59d0997b85614384bbfebeee928340b6", + "269920491c134501873e0110367bc984", + "384d26051c04460e8870a3ffe9406c48", + "8e8a0e89a50646c897e546c4077db79e", + "ff60308921f9432683acbcd6d29fb78f", + "3bc8f6339f4e4a3b961d810255c5573e", + "4780ad263ec04b1a97525d985e102049", + "488feef55878426bbf1c753c6d58735b", + "560ba45d70ca431dadeb327d234c330a", + "04d0a6f74af346f7bc696951949063c8", + "2a18ce941b0f4cef8307988ef898b47f", + "194e3fda3635466b998f96e3dc22746a", + "e2ab3cb38b5a41f68d18ed5f0e6ae22c", + "f0b271bcac6c43a9aaddac54259bb514", + "0dc93d50a283472f9ca64fd0a4c6ff15", + "dd1a50d4497144388a1809b78bb38f58", + "6b72a856e5bd4812a5e0dd0c3bfb8455", + "4e21a567d1f6461985727823b37166e1", + "ec1efb7598fd496bb170673ae1b8a1df", + "84f393468aa74baa903243d238b2d387", + "a54ce365be104d27aaa15cf8c63b5ebe", + "1791220377d141ac9b307246177d0712", + "fa330d4f0fb241aebd065f6ef4a6892c", + "cfa1cc6eed8a4f7791a7959308456b6b", + "b50c9c4433854cf7a6b2593e946b7faa", + "7557cd24ba9b4aa3955866d59db94519", + "cc608dfb880c49d4bc5acf2d691b8ec6", + "cb838c5bed994a9a8e6fcf5c98b76d17", + "76bbe8c2beba4c0594085d32a68d2ee7", + "c9836c952b07472880649b82e2347e8d", + "383db57f997140d482b82b123080837a", + "182abc7ec4d944d9bb2ec1281c98b4c8", + "6934c6d1cbac44dbb08f3fffe3056edb", + "05fa0f6eb78b4c56b219b0e57521bd2e", + "012aa94e3cf24e32833c6bbca23c52f7", + "76c1a1cdc9054bbe90d0d3b662cf0ed1", + "e453f1672772400a851735ba64f42c8b", + "d1358f6b16644cb3a2328ca639a4a77a", + "c19f60d4028045399c62004027eaafd9", + "8055588a1fa940239c801ef66f3ecf3b", + "7468a9bc8bda44e5b44574c64fdc6803", + "a13a8f8b702e44ed88c7d358a0a8b4b4", + "13367fbb763747fa8de94cde40ffae32", + "b1fcf477db664ccdade4096fb79de327", + "9d1c06ac6b774d82adca58773f389161", + "31910159cf30463b8246ec47ffd8ab5b", + "72220420f9d340eabec13a01caebc92c", + "55b14c03a41c495aacf8ac2d0f96ba0b" + ] + }, + "id": "4p3atw4_tFlu", + "outputId": "62ee9812-3819-4a9c-9e24-5687368ffcd8" + }, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "\n", + "ds = load_dataset(\"HuggingFaceTB/smoltalk\", \"everyday-conversations\")\n", + "\n", + "\n", + "def process_dataset(sample):\n", + " # TODO : 🐢 Convertir l'échantillon en un format de chat\n", + " # utiliser la méthode du tokenizer pour appliquer le gabarit de chat.\n", + " return sample\n", + "\n", + "\n", + "ds = ds.map(process_dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 381 + }, + "id": "81fQeazltFlu", + "outputId": "36cf7148-9881-4f13-d0ce-76c82c4ab219" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(\n", + " HTML(\n", + " \"\"\"\n", + "\"\"\"\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bWUSv7NMtFlu" + }, + "outputs": [], + "source": [ + "ds = load_dataset(\"openai/gsm8k\", \"main\")\n", + "\n", + "\n", + "def process_dataset(sample):\n", + " # TODO : 🐕 Convertir l'échantillon en un format de chat\n", + "\n", + " # 1. créer un format de message avec le rôle et le contenu\n", + "\n", + " # 2. appliquer le gabarit de chat aux échantillons en utilisant la méthode du tokenizer.\n", + "\n", + " return sample\n", + "\n", + "\n", + "ds = ds.map(process_dataset)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qlXCuRKotFlu" + }, + "source": [ + "## Conclusion\n", + "\n", + "Ce *notebook* a présenté comment appliquer des gabarits de chat à différents modèles, `SmolLM2`. En structurant les interactions avec des gabarits de chat, nous pouvons nous assurer que les modèles d'IA fournissent des réponses cohérentes et contextuellement pertinentes.\n", + "\n", + "Dans l'exercice, vous avez essayé de convertir un jeu de données au format chatml. Heureusement, TRL le fait pour vous, mais il est utile de comprendre ce qui se passe sous le capot." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "0055b6b628934affaf88bc58a1572bb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_de04f344a8d4428e8ba1836a563d8aa1", + "max": 946449, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03c09673186046d799d6f487d6623e6b", + "value": 946449 + } + }, + "00c9f5ca71b84df4b26acee72c97fefb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "012aa94e3cf24e32833c6bbca23c52f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "016d5e929f1240cea067372b2191d107": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "01e0f8a799ad479eb95eef3e5a09bd70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8fe2df9a14a0436c9124a856ac7419e4", + "IPY_MODEL_d108e029e743419989e30f64f0c82b90", + "IPY_MODEL_bfd11f21f197459b8f27ef364bc9b264" + ], + "layout": "IPY_MODEL_76a0341ebe9f4c3face32460d7023be9" + } + }, + "0206fb9662a349c1aa8a6d87ce01c388": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03c09673186046d799d6f487d6623e6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0479fd3fc1ba476ab46f8c0a98f89468": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "04ae3f7b640c42f3a8eb1977cd1a585d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "04d0a6f74af346f7bc696951949063c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "056b9ef5706843b19cd62fce75743afb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2f0c39ce1c046e8acb150dfbfaf5aa8", + "placeholder": "​", + "style": "IPY_MODEL_7eb12d70d2b542a7b651c7680f590279", + "value": "README.md: 100%" + } + }, + "05fa0f6eb78b4c56b219b0e57521bd2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0942430d36de4677b4c2fa771d7bcd2a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bab42beb845475684e9e71dd1591e1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c336ea5c653434da49e2f0e949f83d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0dc93d50a283472f9ca64fd0a4c6ff15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "10a0f37020d44156a11e9750778892e0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13367fbb763747fa8de94cde40ffae32": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1513792bad534a0c9c381a131395c519": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_76d306c21214412ab44e542d82e547aa", + "placeholder": "​", + "style": "IPY_MODEL_b9e41ef9e9c54fa7b71bc333604af74e", + "value": " 831/831 [00:00<00:00, 42.7kB/s]" + } + }, + "17023310de9b4c3ebd8cc03758d59ef9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1791220377d141ac9b307246177d0712": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "17b4d81e40564a53bb79be9fbef4918e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ea1f9cb22abf4e7d9f6e76fc86c03387", + "max": 9251, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_00c9f5ca71b84df4b26acee72c97fefb", + "value": 9251 + } + }, + "182abc7ec4d944d9bb2ec1281c98b4c8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "194e3fda3635466b998f96e3dc22746a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1cc682330b24431b8812c73041e987d0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "269920491c134501873e0110367bc984": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "26b15fa18b1b4963a1ba76a76675e7ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26ed0f1bae204d74a313d101d9355e90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7612cc9b8908471b90c9118151d6e447", + "placeholder": "​", + "style": "IPY_MODEL_b687aca79e6e470b96254c5e309d6d63", + "value": "generation_config.json: 100%" + } + }, + "2a18ce941b0f4cef8307988ef898b47f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "31910159cf30463b8246ec47ffd8ab5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "383db57f997140d482b82b123080837a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "384d26051c04460e8870a3ffe9406c48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b881514716c47308061fe85b810a6a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_26ed0f1bae204d74a313d101d9355e90", + "IPY_MODEL_4ff5af1784904bc9b85515105885e2d8", + "IPY_MODEL_b3c42d7e25d6494993029531adc3866d" + ], + "layout": "IPY_MODEL_6227b40396ea4024b3c8710c5e65601f" + } + }, + "3bc8f6339f4e4a3b961d810255c5573e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_04d0a6f74af346f7bc696951949063c8", + "placeholder": "​", + "style": "IPY_MODEL_2a18ce941b0f4cef8307988ef898b47f", + "value": "Generating train split: 100%" + } + }, + "3cc519fd92fe4b328943ec839115b63e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e15fc503bb73476980cedb5f06b51ced", + "IPY_MODEL_d8c5dc8df3be4e65b2bbba020d29150f", + "IPY_MODEL_c0177c4ad18740d88acfc603ce4735f8" + ], + "layout": "IPY_MODEL_eb570fd159124e2cbd2df9335b3f9cd6" + } + }, + "3fa18e3b50104af796bd0887f556224a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41a27cf0a91246599d4d1b7dae7c7863": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "45675fb5f5c94f8cae575582f7ae41a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7eb91920e4384194a008902d6c4a09c7", + "placeholder": "​", + "style": "IPY_MODEL_b379da78cb34463aa5a72eedc3d176cd", + "value": " 704/704 [00:00<00:00, 36.5kB/s]" + } + }, + "471b481a3e5b4d439ab31fdc49fc99c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4780ad263ec04b1a97525d985e102049": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_194e3fda3635466b998f96e3dc22746a", + "max": 2260, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e2ab3cb38b5a41f68d18ed5f0e6ae22c", + "value": 2260 + } + }, + "48724ba7ba4e4f00923445245640739f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "488feef55878426bbf1c753c6d58735b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0b271bcac6c43a9aaddac54259bb514", + "placeholder": "​", + "style": "IPY_MODEL_0dc93d50a283472f9ca64fd0a4c6ff15", + "value": " 2260/2260 [00:00<00:00, 21556.99 examples/s]" + } + }, + "4bfa3103048a47989a09a0d90ac6b9bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e21a567d1f6461985727823b37166e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa330d4f0fb241aebd065f6ef4a6892c", + "max": 119, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cfa1cc6eed8a4f7791a7959308456b6b", + "value": 119 + } + }, + "4ff5af1784904bc9b85515105885e2d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3fa18e3b50104af796bd0887f556224a", + "max": 111, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4bfa3103048a47989a09a0d90ac6b9bf", + "value": 111 + } + }, + "505f96bc0c7843bcb1498ba1c1ba5f06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "50dbf8861ca94b0ba1f4a7e2f0d8aead": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d17c62b889754b5d88cfced5b18ff7a7", + "placeholder": "​", + "style": "IPY_MODEL_990f706db474450ba0997d1dbcd53cb7", + "value": " 269M/269M [00:06<00:00, 43.2MB/s]" + } + }, + "5291041c86db4933816088c047d659d8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "530fc4c2bf1244628af7dea3e4b35cdf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "547151540399460fb9a946bbe67afbd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "547eeb64ffd34e509c0b8b8ba6d657e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cbc312cb858b48a5a0f8dbcf60b7e684", + "max": 704, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f70401b6dba74380b19bd1ef887b3bf7", + "value": 704 + } + }, + "55b14c03a41c495aacf8ac2d0f96ba0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "560ba45d70ca431dadeb327d234c330a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "58fb913274b54a60a832513c09608a2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59d0997b85614384bbfebeee928340b6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b7b09d983844f7893bdda411f9a0076": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0206fb9662a349c1aa8a6d87ce01c388", + "placeholder": "​", + "style": "IPY_MODEL_881b6196dfa0446e8c55a2420e484b6b", + "value": " 2.10M/2.10M [00:00<00:00, 20.7MB/s]" + } + }, + "5de5dab3d92f4f41838a8f302d27f0c3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "606e39d53ed64967a60337418c71c595": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6227b40396ea4024b3c8710c5e65601f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "635cc2881a1e4b8788bb26c356740e04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "646484cf7a36444daebe1dfe4a0e4150": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "648c3c820b39493daf0cce5f57a55467": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "67fffe7d6f8c4963972b408529e05532": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26b15fa18b1b4963a1ba76a76675e7ee", + "placeholder": "​", + "style": "IPY_MODEL_db09ab1f79db4f3a8de77f0348eca0f7", + "value": "train-00000-of-00001.parquet: 100%" + } + }, + "6934c6d1cbac44dbb08f3fffe3056edb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69f38fecf8ad403898634cfdfadf8925": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b72a856e5bd4812a5e0dd0c3bfb8455": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a54ce365be104d27aaa15cf8c63b5ebe", + "placeholder": "​", + "style": "IPY_MODEL_1791220377d141ac9b307246177d0712", + "value": "Generating test split: 100%" + } + }, + "6ceb292f2b8544f2a9a005d16d3e8978": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "70f0eaed6ef14c2db8aecb592edeb1ad": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72220420f9d340eabec13a01caebc92c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "745fb1db425e44e5b3a23b36ae7675d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7468a9bc8bda44e5b44574c64fdc6803": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72220420f9d340eabec13a01caebc92c", + "placeholder": "​", + "style": "IPY_MODEL_55b14c03a41c495aacf8ac2d0f96ba0b", + "value": " 119/119 [00:00<00:00, 2302.28 examples/s]" + } + }, + "7557cd24ba9b4aa3955866d59db94519": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7612cc9b8908471b90c9118151d6e447": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76a0341ebe9f4c3face32460d7023be9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76bbe8c2beba4c0594085d32a68d2ee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05fa0f6eb78b4c56b219b0e57521bd2e", + "max": 2260, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_012aa94e3cf24e32833c6bbca23c52f7", + "value": 2260 + } + }, + "76c1a1cdc9054bbe90d0d3b662cf0ed1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76d306c21214412ab44e542d82e547aa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76febcd912404a58add3a39f80a8218d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0bab42beb845475684e9e71dd1591e1d", + "max": 3658, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_89ecd1b28ab64c90afe3b9736fd48306", + "value": 3658 + } + }, + "77d3d81687e6417ab988b04984fc68f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_17023310de9b4c3ebd8cc03758d59ef9", + "placeholder": "​", + "style": "IPY_MODEL_f3e23f781bce4429954d76bfea97aff4", + "value": "special_tokens_map.json: 100%" + } + }, + "77f6c27c3c854138b4aa9789637141a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7a0c705334694da6b750104b28db6dba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b20c7c8f6be40c6815b8531ecb9c936": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d32017fa83aa44f6b2e3443a602654be", + "placeholder": "​", + "style": "IPY_MODEL_ff8debfb713f4b88be6b9b3bf33bfca2", + "value": "tokenizer.json: 100%" + } + }, + "7eb12d70d2b542a7b651c7680f590279": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7eb91920e4384194a008902d6c4a09c7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8055588a1fa940239c801ef66f3ecf3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9d1c06ac6b774d82adca58773f389161", + "max": 119, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_31910159cf30463b8246ec47ffd8ab5b", + "value": 119 + } + }, + "84f393468aa74baa903243d238b2d387": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85de66e1ee3140cf85eadebe5fea1e9f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "881b6196dfa0446e8c55a2420e484b6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89ecd1b28ab64c90afe3b9736fd48306": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8def25e6389f4e6192b517b6e80aa05e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e8a0e89a50646c897e546c4077db79e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8fe2df9a14a0436c9124a856ac7419e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da1a999fb5af4eae9f6a9d1086cbb4cf", + "placeholder": "​", + "style": "IPY_MODEL_77f6c27c3c854138b4aa9789637141a1", + "value": "vocab.json: 100%" + } + }, + "951f60cddcb84dfdbbdf2058369f0541": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_505f96bc0c7843bcb1498ba1c1ba5f06", + "placeholder": "​", + "style": "IPY_MODEL_635cc2881a1e4b8788bb26c356740e04", + "value": " 9.25k/9.25k [00:00<00:00, 428kB/s]" + } + }, + "96c2aae9198441569362135ad4bcbc98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "990f706db474450ba0997d1dbcd53cb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9bea2a23db644ad19b708d10e35d54ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9747e7a810f413ba1ea108307e3ad1d", + "placeholder": "​", + "style": "IPY_MODEL_d0ea49d1d90f4d34bf2ae70efa96946e", + "value": "test-00000-of-00001.parquet: 100%" + } + }, + "9d1c06ac6b774d82adca58773f389161": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a026a32dd6d646bea82c1ebb06147d89": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a13a8f8b702e44ed88c7d358a0a8b4b4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a54ce365be104d27aaa15cf8c63b5ebe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6ee323c13904525a99c6f092ba96e18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_67fffe7d6f8c4963972b408529e05532", + "IPY_MODEL_0055b6b628934affaf88bc58a1572bb6", + "IPY_MODEL_aafbbb9fc5164fa3a88193bfd33d2f79" + ], + "layout": "IPY_MODEL_606e39d53ed64967a60337418c71c595" + } + }, + "aa2d32cb76ba47ebaa5ea391efbf58a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b20c7c8f6be40c6815b8531ecb9c936", + "IPY_MODEL_e90b58981bd34d0e8f975fc1a9658c4c", + "IPY_MODEL_5b7b09d983844f7893bdda411f9a0076" + ], + "layout": "IPY_MODEL_70f0eaed6ef14c2db8aecb592edeb1ad" + } + }, + "aafbbb9fc5164fa3a88193bfd33d2f79": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cc682330b24431b8812c73041e987d0", + "placeholder": "​", + "style": "IPY_MODEL_dafe748a452148038779f6a62a22a4ec", + "value": " 946k/946k [00:00<00:00, 28.7MB/s]" + } + }, + "add90ed3746d4293a1b71198137a892c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_384d26051c04460e8870a3ffe9406c48", + "placeholder": "​", + "style": "IPY_MODEL_8e8a0e89a50646c897e546c4077db79e", + "value": " 52.6k/52.6k [00:00<00:00, 2.34MB/s]" + } + }, + "addad1c100024c44a0959978153da9a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9bea2a23db644ad19b708d10e35d54ee", + "IPY_MODEL_d1174b127571420593971166fbb1966b", + "IPY_MODEL_add90ed3746d4293a1b71198137a892c" + ], + "layout": "IPY_MODEL_8def25e6389f4e6192b517b6e80aa05e" + } + }, + "ae2690497e024095adb3879643cffd33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f600aa1fe4094133888ec9a2504a60eb", + "IPY_MODEL_efe9a9fcebfe441b80075fbfe9c32674", + "IPY_MODEL_50dbf8861ca94b0ba1f4a7e2f0d8aead" + ], + "layout": "IPY_MODEL_547151540399460fb9a946bbe67afbd9" + } + }, + "b1fcf477db664ccdade4096fb79de327": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b31de9bcf83e4070be09c7d663361232": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b379da78cb34463aa5a72eedc3d176cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3c42d7e25d6494993029531adc3866d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85de66e1ee3140cf85eadebe5fea1e9f", + "placeholder": "​", + "style": "IPY_MODEL_b31de9bcf83e4070be09c7d663361232", + "value": " 111/111 [00:00<00:00, 3.57kB/s]" + } + }, + "b50c9c4433854cf7a6b2593e946b7faa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b687aca79e6e470b96254c5e309d6d63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b922b90106414644bc0e933f28dea1bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0a40f83ae2e4ab29376a1d48b53aa6e", + "IPY_MODEL_547eeb64ffd34e509c0b8b8ba6d657e2", + "IPY_MODEL_45675fb5f5c94f8cae575582f7ae41a7" + ], + "layout": "IPY_MODEL_016d5e929f1240cea067372b2191d107" + } + }, + "b9e41ef9e9c54fa7b71bc333604af74e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bde95b39561145548fc81fb4cc94a1bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "be4e145938054f13a510fe4d04a7a60d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bfd11f21f197459b8f27ef364bc9b264": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_745fb1db425e44e5b3a23b36ae7675d1", + "placeholder": "​", + "style": "IPY_MODEL_bde95b39561145548fc81fb4cc94a1bf", + "value": " 801k/801k [00:00<00:00, 5.92MB/s]" + } + }, + "c0177c4ad18740d88acfc603ce4735f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec15d99b3a604405a2b4707931d4bf44", + "placeholder": "​", + "style": "IPY_MODEL_e7f5d507d9564941bb7db742b4bf01c7", + "value": " 466k/466k [00:00<00:00, 3.56MB/s]" + } + }, + "c19f60d4028045399c62004027eaafd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13367fbb763747fa8de94cde40ffae32", + "placeholder": "​", + "style": "IPY_MODEL_b1fcf477db664ccdade4096fb79de327", + "value": "Map: 100%" + } + }, + "c2d74a42fb574b8892d0a288fd92f0a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_056b9ef5706843b19cd62fce75743afb", + "IPY_MODEL_17b4d81e40564a53bb79be9fbef4918e", + "IPY_MODEL_951f60cddcb84dfdbbdf2058369f0541" + ], + "layout": "IPY_MODEL_646484cf7a36444daebe1dfe4a0e4150" + } + }, + "c9747e7a810f413ba1ea108307e3ad1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9836c952b07472880649b82e2347e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_76c1a1cdc9054bbe90d0d3b662cf0ed1", + "placeholder": "​", + "style": "IPY_MODEL_e453f1672772400a851735ba64f42c8b", + "value": " 2260/2260 [00:00<00:00, 10845.53 examples/s]" + } + }, + "cb838c5bed994a9a8e6fcf5c98b76d17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_182abc7ec4d944d9bb2ec1281c98b4c8", + "placeholder": "​", + "style": "IPY_MODEL_6934c6d1cbac44dbb08f3fffe3056edb", + "value": "Map: 100%" + } + }, + "cbc312cb858b48a5a0f8dbcf60b7e684": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc608dfb880c49d4bc5acf2d691b8ec6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb838c5bed994a9a8e6fcf5c98b76d17", + "IPY_MODEL_76bbe8c2beba4c0594085d32a68d2ee7", + "IPY_MODEL_c9836c952b07472880649b82e2347e8d" + ], + "layout": "IPY_MODEL_383db57f997140d482b82b123080837a" + } + }, + "cfa1cc6eed8a4f7791a7959308456b6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0ea49d1d90f4d34bf2ae70efa96946e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d108e029e743419989e30f64f0c82b90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ceb292f2b8544f2a9a005d16d3e8978", + "max": 800662, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_41a27cf0a91246599d4d1b7dae7c7863", + "value": 800662 + } + }, + "d1174b127571420593971166fbb1966b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59d0997b85614384bbfebeee928340b6", + "max": 52603, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_269920491c134501873e0110367bc984", + "value": 52603 + } + }, + "d1358f6b16644cb3a2328ca639a4a77a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c19f60d4028045399c62004027eaafd9", + "IPY_MODEL_8055588a1fa940239c801ef66f3ecf3b", + "IPY_MODEL_7468a9bc8bda44e5b44574c64fdc6803" + ], + "layout": "IPY_MODEL_a13a8f8b702e44ed88c7d358a0a8b4b4" + } + }, + "d17c62b889754b5d88cfced5b18ff7a7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d32017fa83aa44f6b2e3443a602654be": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d43410dfcc8c4bebb8672f10ed2aeb66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d54fb2da9f1f4a89ae962b8816314f43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77d3d81687e6417ab988b04984fc68f4", + "IPY_MODEL_fbce0a69847e4099a55d1e39d4118c91", + "IPY_MODEL_1513792bad534a0c9c381a131395c519" + ], + "layout": "IPY_MODEL_69f38fecf8ad403898634cfdfadf8925" + } + }, + "d64d50101891491f96ff80162dc6d26c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d65ec0f0dc0b44e0869c6159e6e82ad6", + "IPY_MODEL_76febcd912404a58add3a39f80a8218d", + "IPY_MODEL_f4ea276bdc0d4da2a04b46e3f1ed95b5" + ], + "layout": "IPY_MODEL_0942430d36de4677b4c2fa771d7bcd2a" + } + }, + "d65ec0f0dc0b44e0869c6159e6e82ad6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10a0f37020d44156a11e9750778892e0", + "placeholder": "​", + "style": "IPY_MODEL_58fb913274b54a60a832513c09608a2f", + "value": "tokenizer_config.json: 100%" + } + }, + "d8c5dc8df3be4e65b2bbba020d29150f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a0c705334694da6b750104b28db6dba", + "max": 466391, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c336ea5c653434da49e2f0e949f83d0", + "value": 466391 + } + }, + "da1a999fb5af4eae9f6a9d1086cbb4cf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dafe748a452148038779f6a62a22a4ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db09ab1f79db4f3a8de77f0348eca0f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db3bd55d779947028f36a8b24a2621b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dd1a50d4497144388a1809b78bb38f58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b72a856e5bd4812a5e0dd0c3bfb8455", + "IPY_MODEL_4e21a567d1f6461985727823b37166e1", + "IPY_MODEL_ec1efb7598fd496bb170673ae1b8a1df" + ], + "layout": "IPY_MODEL_84f393468aa74baa903243d238b2d387" + } + }, + "de04f344a8d4428e8ba1836a563d8aa1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0a40f83ae2e4ab29376a1d48b53aa6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a026a32dd6d646bea82c1ebb06147d89", + "placeholder": "​", + "style": "IPY_MODEL_0479fd3fc1ba476ab46f8c0a98f89468", + "value": "config.json: 100%" + } + }, + "e15fc503bb73476980cedb5f06b51ced": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5de5dab3d92f4f41838a8f302d27f0c3", + "placeholder": "​", + "style": "IPY_MODEL_471b481a3e5b4d439ab31fdc49fc99c7", + "value": "merges.txt: 100%" + } + }, + "e2ab3cb38b5a41f68d18ed5f0e6ae22c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2f0c39ce1c046e8acb150dfbfaf5aa8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e453f1672772400a851735ba64f42c8b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e7f5d507d9564941bb7db742b4bf01c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e90b58981bd34d0e8f975fc1a9658c4c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ed577dea3ac54884a637ad775b42bc68", + "max": 2104556, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d43410dfcc8c4bebb8672f10ed2aeb66", + "value": 2104556 + } + }, + "ea1f9cb22abf4e7d9f6e76fc86c03387": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eb570fd159124e2cbd2df9335b3f9cd6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec15d99b3a604405a2b4707931d4bf44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec1efb7598fd496bb170673ae1b8a1df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b50c9c4433854cf7a6b2593e946b7faa", + "placeholder": "​", + "style": "IPY_MODEL_7557cd24ba9b4aa3955866d59db94519", + "value": " 119/119 [00:00<00:00, 3547.77 examples/s]" + } + }, + "ed577dea3ac54884a637ad775b42bc68": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "efe9a9fcebfe441b80075fbfe9c32674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_04ae3f7b640c42f3a8eb1977cd1a585d", + "max": 269060552, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_db3bd55d779947028f36a8b24a2621b6", + "value": 269060552 + } + }, + "f0b271bcac6c43a9aaddac54259bb514": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3e23f781bce4429954d76bfea97aff4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f4ea276bdc0d4da2a04b46e3f1ed95b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_be4e145938054f13a510fe4d04a7a60d", + "placeholder": "​", + "style": "IPY_MODEL_648c3c820b39493daf0cce5f57a55467", + "value": " 3.66k/3.66k [00:00<00:00, 197kB/s]" + } + }, + "f600aa1fe4094133888ec9a2504a60eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5291041c86db4933816088c047d659d8", + "placeholder": "​", + "style": "IPY_MODEL_48724ba7ba4e4f00923445245640739f", + "value": "model.safetensors: 100%" + } + }, + "f70401b6dba74380b19bd1ef887b3bf7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fa330d4f0fb241aebd065f6ef4a6892c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fbce0a69847e4099a55d1e39d4118c91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_530fc4c2bf1244628af7dea3e4b35cdf", + "max": 831, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_96c2aae9198441569362135ad4bcbc98", + "value": 831 + } + }, + "ff60308921f9432683acbcd6d29fb78f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bc8f6339f4e4a3b961d810255c5573e", + "IPY_MODEL_4780ad263ec04b1a97525d985e102049", + "IPY_MODEL_488feef55878426bbf1c753c6d58735b" + ], + "layout": "IPY_MODEL_560ba45d70ca431dadeb327d234c330a" + } + }, + "ff8debfb713f4b88be6b9b3bf33bfca2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/course/fr/chapter11/section3.ipynb b/course/fr/chapter11/section3.ipynb new file mode 100644 index 00000000..ec050e75 --- /dev/null +++ b/course/fr/chapter11/section3.ipynb @@ -0,0 +1,273 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Finetuning supervisé avec SFTTrainer\n", + "\n", + "Ce notebook montre comment finetuner le modèle `HuggingFaceTB/SmolLM2-135M` en utilisant le `SFTTrainer` de la bibliothèque `trl`. Les cellules du notebook s'exécutent et vont finetuner le modèle. Vous pouvez choisir votre difficulté en essayant différents jeux de données.\n", + "
\n", + "

Exercice : Finetuning de SmolLM2 avec SFTTrainer

\n", + "

Prenez un jeu de données provenant du Hub d'Hugging Face et finetuné un modèle sur dessus.

\n", + "

Niveaux de difficulté

\n", + "

🐢 Utilisez le jeu de données `HuggingFaceTB/smoltalk`

\n", + "

🐕 Essayez le jeu de données `bigcode/the-stack-smol` et finetunez un modèle de génération de code sur un sous-ensemble spécifique `data/python`

\n", + "

🦁 Sélectionnez un jeu de données en rapport avec un cas d'utilisation réel qui vous intéresse

\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Installer les prérequis dans Google Colab\n", + "# !pip install transformers datasets trl huggingface_hub\n", + "\n", + "# S'authentifier sur Hugging Face\n", + "from huggingface_hub import login\n", + "\n", + "login()\n", + "\n", + "# Pour plus de facilité, vous pouvez créer une variable d'environnement contenant votre jeton de hub sous la forme HF_TOKEN" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Importer les bibliothèques nécessaires\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer\n", + "from datasets import load_dataset\n", + "from trl import SFTConfig, SFTTrainer, setup_chat_format\n", + "import torch\n", + "\n", + "device = (\n", + " \"cuda\"\n", + " if torch.cuda.is_available()\n", + " else \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n", + ")\n", + "\n", + "# Charger le modèle et le tokenizer\n", + "model_name = \"HuggingFaceTB/SmolLM2-135M\"\n", + "model = AutoModelForCausalLM.from_pretrained(\n", + " pretrained_model_name_or_path=model_name\n", + ").to(device)\n", + "tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)\n", + "\n", + "# Définir le format de chat\n", + "model, tokenizer = setup_chat_format(model=model, tokenizer=tokenizer)\n", + "\n", + "# Définir le nom du finetuning à sauvegarder et/ou à télécharger\n", + "finetune_name = \"SmolLM2-FT-MyDataset\"\n", + "finetune_tags = [\"smol-course\", \"module_1\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Générer avec le modèle de base\n", + "\n", + "Ici, nous allons essayer le modèle de base qui n'a pas de gabarit de chat. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Testons le modèle de base avant l'entraînement\n", + "prompt = \"Write a haiku about programming\"\n", + "\n", + "# Format avec gabarit\n", + "messages = [{\"role\": \"user\", \"content\": prompt}]\n", + "formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)\n", + "\n", + "# Générer une réponse\n", + "inputs = tokenizer(formatted_prompt, return_tensors=\"pt\").to(device)\n", + "outputs = model.generate(**inputs, max_new_tokens=100)\n", + "print(\"Before training:\")\n", + "print(tokenizer.decode(outputs[0], skip_special_tokens=True))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Préparation du jeu de données\n", + "\n", + "Nous allons charger un échantillon du jeu de données et le formater pour l'entraînement. Le jeu de données doit être structuré avec des paires entrée-sortie, où chaque entrée est une instruction et la sortie est la réponse attendue du modèle.\n", + "\n", + "**TRL va formater les messages d'entrée en se basant sur les gabarits de chat du modèle.** Ils doivent être représentés sous la forme d'une liste de dictionnaires avec les clés : `role` et `content`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Chargement d'un échantillon du jeu de données\n", + "from datasets import load_dataset\n", + "\n", + "# TODO : définir votre jeu de données et votre configuration en utilisant les paramètres path et name\n", + "ds = load_dataset(path=\"HuggingFaceTB/smoltalk\", name=\"everyday-conversations\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# TODO : 🦁 Si votre jeu de données n'est pas dans un format que TRL peut convertir en gabarit de chat, vous devrez le traiter. Reportez-vous au [module](../chat_templates.md)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Configurer le SFTTrainer\n", + "\n", + "Le `SFTTrainer` est configuré avec différents paramètres qui contrôlent le processus d'apprentissage. Ceux-ci incluent le nombre d'étapes d'entraînement, la taille de batch, le taux d'apprentissage et la stratégie d'évaluation. Ajustez ces paramètres en fonction de vos besoins spécifiques et de vos ressources de calcul." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Configurer le SFTTrainer\n", + "sft_config = SFTConfig(\n", + " output_dir=\"./sft_output\",\n", + " max_steps=1000, # Ajuster en fonction de la taille du jeu de données et de la durée d'entraînement souhaitée\n", + " per_device_train_batch_size=4, # Régler en fonction de la capacité de mémoire de votre GPU\n", + " learning_rate=5e-5, # Point de départ commun pour le finetuning\n", + " logging_steps=10, # Fréquence d'enregistrement des métriques d'entraînement\n", + " save_steps=100, # Fréquence de sauvegarde des checkpoints du modèle\n", + " evaluation_strategy=\"steps\", # Évaluer le modèle à intervalles réguliers\n", + " eval_steps=50, # Fréquence de l'évaluation\n", + " use_mps_device=(\n", + " True if device == \"mps\" else False\n", + " ), # Utiliser MPS pour un entraînement à précision mixte\n", + " hub_model_id=finetune_name, # Définissez un nom unique pour votre modèle\n", + ")\n", + "\n", + "# Initialiser le SFTTrainer\n", + "trainer = SFTTrainer(\n", + " model=model,\n", + " args=sft_config,\n", + " train_dataset=ds[\"train\"],\n", + " tokenizer=tokenizer,\n", + " eval_dataset=ds[\"test\"],\n", + ")\n", + "\n", + "# TODO : 🦁 🐕 aligner les paramètres de SFTTrainer avec le jeu de données que vous avez choisi. \n", + "# Par exemple, si vous utilisez le jeu de données `bigcode/the-stack-smol`, vous devrez choisir la colonne `content`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Entraînement du modèle\n", + "\n", + "Une fois le Trainer configuré, nous pouvons maintenant procéder à l'entraînement du modèle. Le processus d'entraînement consiste à itérer sur le jeu de données, à calculer la perte et à mettre à jour les paramètres du modèle afin de minimiser cette perte." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Entraîner le modèle\n", + "trainer.train()\n", + "\n", + "# Sauvegarder le modèle\n", + "trainer.save_model(f\"./{finetune_name}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "trainer.push_to_hub(tags=finetune_tags)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "

Exercice bonus : Générer avec un modèle finetuné

\n", + "

🐕 Utiliser le modèle finetuné pour générer une réponse, comme dans l'exemple de base

\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Tester le modèle finetuné sur la même instruction\n", + "\n", + "# Testons le modèle de base avant l'entraînement\n", + "prompt = \"Write a haiku about programming\"\n", + "\n", + "# Format avec gabarit\n", + "messages = [{\"role\": \"user\", \"content\": prompt}]\n", + "formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)\n", + "\n", + "# Générer une réponse\n", + "inputs = tokenizer(formatted_prompt, return_tensors=\"pt\").to(device)\n", + "\n", + "# TODO : utiliser le modèle finetuné pour générer une réponse, comme dans l'exemple de base." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 💐 Vous avez terminé !\n", + "\n", + "Ce *notebook* fournit un guide étape par étape pour finetuner le modèle `HuggingFaceTB/SmolLM2-135M` en utilisant le `SFTTrainer`. En suivant ces étapes, vous pouvez adapter le modèle pour effectuer des tâches spécifiques plus efficacement. Si vous voulez continuer à travailler sur ce cours, voici quelques étapes que vous pouvez essayer :\n", + "\n", + "- Essayez ce *notebook* avec un niveau de difficulté plus élevé\n", + "- Examiner la PR d'un collègue\n", + "- Améliorez le matériel de cours par le biais d'une *issue* ou d'une PR." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/course/fr/chapter11/section4.ipynb b/course/fr/chapter11/section4.ipynb new file mode 100644 index 00000000..01fa16d3 --- /dev/null +++ b/course/fr/chapter11/section4.ipynb @@ -0,0 +1,513 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "z-6LLOPZouLg" + }, + "source": [ + "# Comment finetuner des LLMs avec des adaptateurs LoRA en utilisant Hugging Face TRL\n", + "\n", + "Ce *notebook* montre comment finetuner efficacement de grands modèles de langage en utilisant des adaptateurs LoRA (*Low-Rank Adaptation*). LoRA est une technique de finetuning efficace en termes de paramètres qui :\n", + "- gèle les poids du modèle pré-entraîné\n", + "- ajoute aux couches d'attention de petites matrices de décomposition de rangs entraînables\n", + "- Réduit généralement les paramètres entraînables d'environ 90%\n", + "- Maintient les performances du modèle tout en étant économe en mémoire\n", + "\n", + "Nous aborderons les points suivants\n", + "1. Mise en place de l'environnement de développement et configuration de LoRA\n", + "2. Créer et préparer le jeu de données pour l'entraînement de l'adaptateur\n", + "3. Finetuner en utilisant `trl` et `SFTTrainer` avec les adaptateurs LoRA\n", + "4. Tester le modèle et fusionner les adaptateurs (optionnel)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fXqd9BXgouLi" + }, + "source": [ + "## 1. Configurer l'environnement de développement\n", + "\n", + "Notre première étape consiste à installer les bibliothques d'Hugging Face et Pytorch, y compris trl, les transformers et les datasets. Si vous n'avez pas encore entendu parler de trl, ne vous inquiétez pas. Il s'agit d'une nouvelle bibliothèque au-dessus des transformers et des datasets permetant de finetuner, rlhf, aligner les LLMs ouverts plus facilement." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tKvGVxImouLi" + }, + "outputs": [], + "source": [ + "# Installer les prérequis dans Google Colab\n", + "# !pip install transformers datasets trl huggingface_hub\n", + "\n", + "# S'authentifier sur Hugging Face\n", + "from huggingface_hub import login\n", + "\n", + "login()\n", + "\n", + "# Pour plus de facilité, vous pouvez créer une variable d'environnement contenant votre jeton de hub sous la forme HF_TOKEN" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XHUzfwpKouLk" + }, + "source": [ + "## 2. Charger le jeu de données" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "z4p6Bvo7ouLk" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['full_topic', 'messages'],\n", + " num_rows: 2260\n", + " })\n", + " test: Dataset({\n", + " features: ['full_topic', 'messages'],\n", + " num_rows: 119\n", + " })\n", + "})" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Charger un échantillon de jeu de données\n", + "from datasets import load_dataset\n", + "\n", + "# TODO : définir votre jeu de données et votre configuration en utilisant les paramètres path et name\n", + "dataset = load_dataset(path=\"HuggingFaceTB/smoltalk\", name=\"everyday-conversations\")\n", + "dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9TOhJdtsouLk" + }, + "source": [ + "## 3. Fine-tune LLM using `trl` and the `SFTTrainer` with LoRA\n", + "\n", + "The [SFTTrainer](https://huggingface.co/docs/trl/sft_trainer) from `trl` provides integration with LoRA adapters through the [PEFT](https://huggingface.co/docs/peft/en/index) library. Key advantages of this setup include:\n", + "\n", + "1. **Memory Efficiency**: \n", + " - Only adapter parameters are stored in GPU memory\n", + " - Base model weights remain frozen and can be loaded in lower precision\n", + " - Enables fine-tuning of large models on consumer GPUs\n", + "\n", + "2. **Training Features**:\n", + " - Native PEFT/LoRA integration with minimal setup\n", + " - Support for QLoRA (Quantized LoRA) for even better memory efficiency\n", + "\n", + "3. **Adapter Management**:\n", + " - Adapter weight saving during checkpoints\n", + " - Features to merge adapters back into base model\n", + "\n", + "We'll use LoRA in our example, which combines LoRA with 4-bit quantization to further reduce memory usage without sacrificing performance. The setup requires just a few configuration steps:\n", + "1. Define the LoRA configuration (rank, alpha, dropout)\n", + "2. Create the SFTTrainer with PEFT config\n", + "3. Train and save the adapter weights\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Importer les bibliothèques nécessaires\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer\n", + "from datasets import load_dataset\n", + "from trl import SFTConfig, SFTTrainer, setup_chat_format\n", + "import torch\n", + "\n", + "device = (\n", + " \"cuda\"\n", + " if torch.cuda.is_available()\n", + " else \"mps\" if torch.backends.mps.is_available() else \"cpu\"\n", + ")\n", + "\n", + "# Charger le modèle et le tokenizer\n", + "model_name = \"HuggingFaceTB/SmolLM2-135M\"\n", + "\n", + "model = AutoModelForCausalLM.from_pretrained(\n", + " pretrained_model_name_or_path=model_name\n", + ").to(device)\n", + "tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)\n", + "\n", + "# Définir le format de chat\n", + "model, tokenizer = setup_chat_format(model=model, tokenizer=tokenizer)\n", + "\n", + "# Définir le nom du finetuning à sauvegarder et/ou à télécharger\n", + "finetune_name = \"SmolLM2-FT-MyDataset\"\n", + "finetune_tags = [\"smol-course\", \"module_1\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZbuVArTHouLk" + }, + "source": [ + "`SFTTrainer` supporte une intégration native avec `peft`, ce qui rend super facile le finetuning des LLMs en utilisant, par exemple, LoRA. Nous avons seulement besoin de créer notre `LoraConfig` et de le fournir au Trainer.\n", + "\n", + "
\n", + "

Exercice : Définir les paramètres de LoRA pour le finetuning

\n", + "

Prenez un jeu de données provenant du Hub d'Hugging Face et finetuné un modèle sur dessus.

\n", + "

Niveaux de difficulté

\n", + "

🐢 Utiliser les paramètres généraux pour un finetuning arbitraire

\n", + "

🐕 Ajuster les paramètres et vérifier les poids et les biais

\n", + "

🦁 Ajuster les paramètres et montrer les changements dans les résultats de l'inférence

\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "blDSs9swouLk" + }, + "outputs": [], + "source": [ + "from peft import LoraConfig\n", + "\n", + "# TODO : Configurer les paramètres de LoRA\n", + "# r : dimension du rang des matrices LoRA (plus petite = plus de compression)\n", + "rank_dimension = 6\n", + "# lora_alpha : facteur d'échelle pour les couches LoRA (plus élevé = adaptation plus forte)\n", + "lora_alpha = 8\n", + "# lora_dropout : probabilité de dropout pour les couches LoRA (aide à prévenir le surentraînement)\n", + "lora_dropout = 0.05\n", + "\n", + "peft_config = LoraConfig(\n", + " r=rank_dimension, # Dimension du rang, généralement entre 4 et 32\n", + " lora_alpha=lora_alpha, # Facteur d'échelle LoRA, généralement 2x le rang\n", + " lora_dropout=lora_dropout, # Probabilité de dropout probability pour les couches de LoRA\n", + " bias=\"none\", # Type de biais pour le LoRA. Les biais correspondants seront mis à jour pendant l'entraînement\n", + " target_modules=\"all-linear\", # Modules auxquels appliquer le LoRA\n", + " task_type=\"CAUSAL_LM\", # Type de tâche pour l'architecture du modèle\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l5NUDPcaouLl" + }, + "source": [ + "Avant de commencer notre entraînement, nous devons définir les hyperparamètres (`TrainingArguments`) que nous voulons utiliser." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "NqT28VZlouLl" + }, + "outputs": [], + "source": [ + "# Configuration de l'entraînement\n", + "# Hyperparamètres basés sur les recommandations du papier du QLoRA\n", + "args = SFTConfig(\n", + " # Paramètres de sortie\n", + " output_dir=finetune_name, # Répertoire pour enregistrer les checkpoints du modèle\n", + " # Durée de l'entraînement\n", + " num_train_epochs=1, # Nombre d'époques d'entraînement\n", + " # Paramètres de la taille des batchs\n", + " per_device_train_batch_size=2, # Taille des batchs par GPU\n", + " gradient_accumulation_steps=2, # Accumuler les gradients pour obtenir un plus grand batch efficace\n", + " # Optimisation de la mémoire\n", + " gradient_checkpointing=True, # Échanger le calcul contre des économies de mémoire\n", + " # Paramètres de l'optimiseur\n", + " optim=\"adamw_torch_fused\", # Utiliser AdamW fusionné pour plus d'efficacité\n", + " learning_rate=2e-4, # Taux d'apprentissage (papier du QLoRA)\n", + " max_grad_norm=0.3, # Seuil d'écrêtage du gradient\n", + " # Taux d'apprentissage\n", + " warmup_ratio=0.03, # Portion de pas pour l'échauffement\n", + " lr_scheduler_type=\"constant\", # Maintenir un rythme d'apprentissage constant après l'échauffement\n", + " # Enregistrement et sauvegarde\n", + " logging_steps=10, # Enregistrement des métriques tous les N pas\n", + " save_strategy=\"epoch\", # Sauvegarde du checkpoint à chaque époque\n", + " # Paramètres de précision\n", + " bf16=True, # Utiliser la précision bfloat16\n", + " # Paramètres d'intégration\n", + " push_to_hub=False, # Ne pas pousser vers le Hub\n", + " report_to=\"none\", # Désactiver l'enregistrement externe\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cGhR7uFBouLl" + }, + "source": [ + "Nous avons maintenant tous les éléments nécessaires pour créer notre `SFTTrainer` et commencer à entraîner notre modèle." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "M00Har2douLl" + }, + "outputs": [], + "source": [ + "max_seq_length = 1512 # longueur maximale des séquences pour le modèle et le paquetage du jeu de données\n", + "\n", + "# Créer SFTTrainer avec la configuration LoRA\n", + "trainer = SFTTrainer(\n", + " model=model,\n", + " args=args,\n", + " train_dataset=dataset[\"train\"],\n", + " peft_config=peft_config, # Configuration LoRA\n", + " max_seq_length=max_seq_length, # Longueur maximale de la séquence\n", + " tokenizer=tokenizer,\n", + " packing=True, # Activer l'emballage d'entrée pour plus d'efficacité\n", + " dataset_kwargs={\n", + " \"add_special_tokens\": False, # Tokens spéciaux gérés par le gabarit\n", + " \"append_concat_token\": False, # Aucun séparateur supplémentaire n'est nécessaire\n", + " },\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zQ_kRN24ouLl" + }, + "source": [ + "Commencez à entraîner notre modèle en appelant la méthode `train()` sur notre instance `Trainer`. Cela va démarrer la boucle d'entraînement et entraîner notre modèle pendant 3 époques. Puisque nous utilisons une méthode PEFT, nous ne sauvegarderons que les poids du modèle adapté et non le modèle complet." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Tq4nIYqKouLl" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "300e5dfbb4b54750b77324345c7591f9", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/72 [00:00\n", + "

Exercice bonus : Chargement de l'adaptateur LoRA

\n", + "

Utilisez ce que vous avez appris dans le notebook pour charger votre adaptateur LoRA entraîné pour l'inférence

\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "I5B494OdouLl" + }, + "outputs": [], + "source": [ + "# libérer la mémoire\n", + "del model\n", + "del trainer\n", + "torch.cuda.empty_cache()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "P1UhohVdouLl" + }, + "outputs": [], + "source": [ + "import torch\n", + "from peft import AutoPeftModelForCausalLM\n", + "from transformers import AutoTokenizer, pipeline\n", + "\n", + "# Chargement du modèle avec l'adaptateur PEFT\n", + "tokenizer = AutoTokenizer.from_pretrained(finetune_name)\n", + "model = AutoPeftModelForCausalLM.from_pretrained(\n", + " finetune_name, device_map=\"auto\", torch_dtype=torch.float16\n", + ")\n", + "pipe = pipeline(\n", + " \"text-generation\", model=merged_model, tokenizer=tokenizer, device=device\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "99uFDAuuouLl" + }, + "source": [ + "Testons quelques échantillons d'instructions et voyons comment le modèle se comporte." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "-shSmUbvouLl", + "outputId": "16d97c61-3b31-4040-c780-3c4de75c3824" + }, + "outputs": [], + "source": [ + "prompts = [\n", + " \"What is the capital of Germany? Explain why thats the case and if it was different in the past?\",\n", + " \"Write a Python function to calculate the factorial of a number.\",\n", + " \"A rectangular garden has a length of 25 feet and a width of 15 feet. If you want to build a fence around the entire garden, how many feet of fencing will you need?\",\n", + " \"What is the difference between a fruit and a vegetable? Give examples of each.\",\n", + "]\n", + "\n", + "\n", + "def test_inference(prompt):\n", + " prompt = pipe.tokenizer.apply_chat_template(\n", + " [{\"role\": \"user\", \"content\": prompt}],\n", + " tokenize=False,\n", + " add_generation_prompt=True,\n", + " )\n", + " outputs = pipe(\n", + " prompt,\n", + " )\n", + " return outputs[0][\"generated_text\"][len(prompt) :].strip()\n", + "\n", + "\n", + "for prompt in prompts:\n", + " print(f\" prompt:\\n{prompt}\")\n", + " print(f\" response:\\n{test_inference(prompt)}\")\n", + " print(\"-\" * 50)" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}