5959 DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER ,
6060)
6161
62-
6362requests .packages .urllib3 .disable_warnings (InsecureRequestWarning )
6463
6564random .seed (42 )
@@ -223,7 +222,7 @@ def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
223222 param .data .copy_ (s_param .data )
224223
225224 def to (self , device = None , dtype = None ) -> None :
226- r """Move internal buffers of the ExponentialMovingAverage to `device`.
225+ """Move internal buffers of the ExponentialMovingAverage to `device`.
227226
228227 Args:
229228 device: like `device` argument to `torch.Tensor.to`
@@ -313,7 +312,7 @@ def parse_args():
313312 type = str ,
314313 default = None ,
315314 choices = ["DDIM" , "DDPM" , "LMSDiscrete" ],
316- help = "The noise scheduler for the Diffusion pipiline used for training." ,
315+ help = "The noise scheduler for the Diffusion pipeline used for training." ,
317316 )
318317 parser .add_argument (
319318 "--beta_start" ,
@@ -337,7 +336,7 @@ def parse_args():
337336 "--noise_schedule_steps" ,
338337 type = int ,
339338 default = 1000 ,
340- help = ( "The noise scheduler max train timestemps" ) ,
339+ help = "The noise scheduler max train timestamps" ,
341340 )
342341 parser .add_argument (
343342 "--center_crop" ,
@@ -540,7 +539,7 @@ def parse_args():
540539 type = str ,
541540 default = "mean_min_max" ,
542541 choices = ["min_max" , "mean_min_max" , "threesigma" ],
543- help = "They way how to estimate activation quantization paramters at the initializatin step before QAT." ,
542+ help = "They way how to estimate activation quantization parameters at the initialization step before QAT." ,
544543 )
545544 parser .add_argument (
546545 "--tune_quantizers_only" ,
@@ -775,7 +774,7 @@ def main():
775774 gradient_accumulation_steps = args .gradient_accumulation_steps ,
776775 mixed_precision = args .mixed_precision ,
777776 log_with = args .report_to ,
778- logging_dir = logging_dir ,
777+ project_dir = logging_dir ,
779778 )
780779
781780 logging .basicConfig (
@@ -994,8 +993,8 @@ def collate_fn(examples):
994993 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
995994 overrode_max_train_steps = True
996995
997- unet , optimizer , train_dataloader , lr_scheduler = accelerator .prepare (
998- unet , optimizer , train_dataloader , lr_scheduler
996+ optimizer , train_dataloader , lr_scheduler = accelerator .prepare (
997+ optimizer , train_dataloader , lr_scheduler
999998 )
1000999
10011000 weight_dtype = torch .float32
@@ -1120,7 +1119,7 @@ def collate_fn(examples):
11201119
11211120 accelerator .end_training ()
11221121
1123- # Export optimized pipline to OpenVINO
1122+ # Export optimized pipeline to OpenVINO
11241123 export_unet = compression_controller .strip (do_copy = False )
11251124 export_pipeline = StableDiffusionPipeline (
11261125 text_encoder = text_encoder ,
0 commit comments