@@ -1238,9 +1238,17 @@ def _cfg(url='', **kwargs):
1238
1238
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_small_lamb-aff75073.pth' ,
1239
1239
hf_hub_id = 'timm/' ),
1240
1240
1241
- 'mobilenet_100.untrained' : _cfg (),
1242
- 'mobilenet_100h.untrained' : _cfg (),
1243
- 'mobilenet_125.untrained' : _cfg (),
1241
+ 'mobilenetv1_100.ra4_e3600_r224_in1k' : _cfg (
1242
+ hf_hub_id = 'timm/' ,
1243
+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1244
+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 0.95 ,
1245
+ ),
1246
+ 'mobilenetv1_100h.ra4_e3600_r224_in1k' : _cfg (
1247
+ hf_hub_id = 'timm/' ,
1248
+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1249
+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 0.95 ,
1250
+ ),
1251
+ 'mobilenetv1_125.untrained' : _cfg (),
1244
1252
1245
1253
'mobilenetv2_035.untrained' : _cfg (),
1246
1254
'mobilenetv2_050.lamb_in1k' : _cfg (
@@ -1275,22 +1283,27 @@ def _cfg(url='', **kwargs):
1275
1283
'efficientnet_b0.ra_in1k' : _cfg (
1276
1284
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth' ,
1277
1285
hf_hub_id = 'timm/' ),
1286
+ 'efficientnet_b0.ra4_e3600_r224_in1k' : _cfg (
1287
+ hf_hub_id = 'timm/' ,
1288
+ mean = IMAGENET_INCEPTION_MEAN , std = IMAGENET_INCEPTION_STD ,
1289
+ crop_pct = 0.9 , test_input_size = (3 , 256 , 256 ), test_crop_pct = 1.0
1290
+ ),
1278
1291
'efficientnet_b1.ft_in1k' : _cfg (
1279
1292
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth' ,
1280
1293
hf_hub_id = 'timm/' ,
1281
- test_input_size = (3 , 256 , 256 ), crop_pct = 1.0 ),
1294
+ test_input_size = (3 , 256 , 256 ), test_crop_pct = 1.0 ),
1282
1295
'efficientnet_b2.ra_in1k' : _cfg (
1283
1296
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth' ,
1284
1297
hf_hub_id = 'timm/' ,
1285
- input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), test_input_size = (3 , 288 , 288 ), crop_pct = 1.0 ),
1298
+ input_size = (3 , 256 , 256 ), pool_size = (8 , 8 ), test_input_size = (3 , 288 , 288 ), test_crop_pct = 1.0 ),
1286
1299
'efficientnet_b3.ra2_in1k' : _cfg (
1287
1300
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth' ,
1288
1301
hf_hub_id = 'timm/' ,
1289
- input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), crop_pct = 1.0 ),
1302
+ input_size = (3 , 288 , 288 ), pool_size = (9 , 9 ), test_input_size = (3 , 320 , 320 ), test_crop_pct = 1.0 ),
1290
1303
'efficientnet_b4.ra2_in1k' : _cfg (
1291
1304
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b4_ra2_320-7eb33cd5.pth' ,
1292
1305
hf_hub_id = 'timm/' ,
1293
- input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), test_input_size = (3 , 384 , 384 ), crop_pct = 1.0 ),
1306
+ input_size = (3 , 320 , 320 ), pool_size = (10 , 10 ), test_input_size = (3 , 384 , 384 ), test_crop_pct = 1.0 ),
1294
1307
'efficientnet_b5.sw_in12k_ft_in1k' : _cfg (
1295
1308
hf_hub_id = 'timm/' ,
1296
1309
input_size = (3 , 448 , 448 ), pool_size = (14 , 14 ), crop_pct = 1.0 , crop_mode = 'squash' ),
@@ -1826,23 +1839,23 @@ def mnasnet_small(pretrained=False, **kwargs) -> EfficientNet:
1826
1839
1827
1840
1828
1841
@register_model
1829
- def mobilenet_100 (pretrained = False , ** kwargs ) -> EfficientNet :
1842
+ def mobilenetv1_100 (pretrained = False , ** kwargs ) -> EfficientNet :
1830
1843
""" MobileNet V1 """
1831
- model = _gen_mobilenet_v1 ('mobilenet_100 ' , 1.0 , pretrained = pretrained , ** kwargs )
1844
+ model = _gen_mobilenet_v1 ('mobilenetv1_100 ' , 1.0 , pretrained = pretrained , ** kwargs )
1832
1845
return model
1833
1846
1834
1847
1835
1848
@register_model
1836
- def mobilenet_100h (pretrained = False , ** kwargs ) -> EfficientNet :
1849
+ def mobilenetv1_100h (pretrained = False , ** kwargs ) -> EfficientNet :
1837
1850
""" MobileNet V1 """
1838
- model = _gen_mobilenet_v1 ('mobilenet_100h ' , 1.0 , head_conv = True , pretrained = pretrained , ** kwargs )
1851
+ model = _gen_mobilenet_v1 ('mobilenetv1_100h ' , 1.0 , head_conv = True , pretrained = pretrained , ** kwargs )
1839
1852
return model
1840
1853
1841
1854
1842
1855
@register_model
1843
- def mobilenet_125 (pretrained = False , ** kwargs ) -> EfficientNet :
1856
+ def mobilenetv1_125 (pretrained = False , ** kwargs ) -> EfficientNet :
1844
1857
""" MobileNet V1 """
1845
- model = _gen_mobilenet_v1 ('mobilenet_125 ' , 1.25 , pretrained = pretrained , ** kwargs )
1858
+ model = _gen_mobilenet_v1 ('mobilenetv1_125 ' , 1.25 , pretrained = pretrained , ** kwargs )
1846
1859
return model
1847
1860
1848
1861
0 commit comments