Skip to content

isdaniel/pgtuner_mcp

Repository files navigation

PostgreSQL Performance Tuning MCP

PyPI - Version PyPI - Downloads Python 3.10+ Pepy Total Downloads Docker Pulls

A Model Context Protocol (MCP) server that provides AI-powered PostgreSQL performance tuning capabilities. This server helps identify slow queries, recommend optimal indexes, analyze execution plans, and leverage HypoPG for hypothetical index testing.

Features

Query Analysis

  • Retrieve slow queries from pg_stat_statements with detailed statistics
  • Analyze query execution plans with EXPLAIN and EXPLAIN ANALYZE
  • Identify performance bottlenecks with automated plan analysis
  • Monitor active queries and detect long-running transactions

Index Tuning

  • AI-powered index recommendations based on query workload analysis
  • Hypothetical index testing with HypoPG extension (no disk usage)
  • Find unused and duplicate indexes for cleanup
  • Estimate index sizes before creation
  • Test query plans with proposed indexes before implementing

Database Health

  • Comprehensive health scoring with multiple checks
  • Connection utilization monitoring
  • Cache hit ratio analysis (buffer and index)
  • Lock contention detection
  • Vacuum health and transaction ID wraparound monitoring
  • Replication lag monitoring
  • Background writer and checkpoint analysis

Configuration Analysis

  • Review PostgreSQL settings by category
  • Get recommendations for memory, checkpoint, WAL, autovacuum, and connection settings
  • Identify suboptimal configurations

MCP Prompts & Resources

  • Pre-defined prompt templates for common tuning workflows
  • Dynamic resources for table stats, index info, and health checks
  • Comprehensive documentation resources

Installation

Standard Installation (for MCP clients like Claude Desktop)

pip install pgtuner_mcp

Or using uv:

uv pip install pgtuner_mcp

Manual Installation

git clone https://github.com/isdaniel/pgtuner_mcp.git
cd pgtuner_mcp
pip install -e .

Configuration

Environment Variables

Variable Description Required
DATABASE_URI PostgreSQL connection string Yes

Connection String Format: postgresql://user:password@host:port/database

MCP Client Configuration

Add to your cline_mcp_settings.json or Claude Desktop config:

{
  "mcpServers": {
    "pgtuner_mcp": {
      "command": "python",
      "args": ["-m", "pgtuner_mcp"],
      "env": {
        "DATABASE_URI": "postgresql://user:password@localhost:5432/mydb"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Or Streamable HTTP Mode

{
  "mcpServers": {
    "pgtuner_mcp": {
      "type": "http",
      "url": "http://localhost:8080/mcp"
    }
  }
}

Server Modes

1. Standard MCP Mode (Default)

# Default mode (stdio)
python -m pgtuner_mcp

# Explicitly specify stdio mode
python -m pgtuner_mcp --mode stdio

2. HTTP SSE Mode (Legacy Web Applications)

# Start SSE server on default host/port (0.0.0.0:8080)
python -m pgtuner_mcp --mode sse

# Specify custom host and port
python -m pgtuner_mcp --mode sse --host localhost --port 3000

# Enable debug mode
python -m pgtuner_mcp --mode sse --debug

3. Streamable HTTP Mode (Modern MCP Protocol - Recommended)

The streamable-http mode implements the modern MCP Streamable HTTP protocol with a single /mcp endpoint. It supports both stateful (session-based) and stateless modes.

# Start Streamable HTTP server in stateful mode (default)
python -m pgtuner_mcp --mode streamable-http

# Start in stateless mode (fresh transport per request)
python -m pgtuner_mcp --mode streamable-http --stateless

# Specify custom host and port
python -m pgtuner_mcp --mode streamable-http --host localhost --port 8080

# Enable debug mode
python -m pgtuner_mcp --mode streamable-http --debug

Stateful vs Stateless:

  • Stateful (default): Maintains session state across requests using mcp-session-id header. Ideal for long-running interactions.
  • Stateless: Creates a fresh transport for each request with no session tracking. Ideal for serverless deployments or simple request/response patterns.

Endpoint: http://{host}:{port}/mcp

Available Tools

Performance Analysis Tools

Tool Description
get_slow_queries Retrieve slow queries from pg_stat_statements with detailed stats (total time, mean time, calls, cache hit ratio)
analyze_query Analyze a query's execution plan with EXPLAIN ANALYZE, including automated issue detection
get_table_stats Get detailed table statistics including size, row counts, dead tuples, and access patterns

Index Tuning Tools

Tool Description
get_index_recommendations AI-powered index recommendations based on query workload analysis
explain_with_indexes Run EXPLAIN with hypothetical indexes to test improvements without creating real indexes
manage_hypothetical_indexes Create, list, drop, or reset HypoPG hypothetical indexes
find_unused_indexes Find unused and duplicate indexes that can be safely dropped

Database Health Tools

Tool Description
check_database_health Comprehensive health check with scoring (connections, cache, locks, replication, wraparound, disk, checkpoints)
get_active_queries Monitor active queries, find long-running transactions and blocked queries
analyze_wait_events Analyze wait events to identify I/O, lock, or CPU bottlenecks
review_settings Review PostgreSQL settings by category with optimization recommendations

Tool Parameters

get_slow_queries

  • limit: Maximum queries to return (default: 10)
  • min_calls: Minimum call count filter (default: 1)
  • min_total_time_ms: Minimum total execution time filter
  • order_by: Sort by total_time, mean_time, calls, or rows

analyze_query

  • query (required): SQL query to analyze
  • analyze: Execute query with EXPLAIN ANALYZE (default: true)
  • buffers: Include buffer statistics (default: true)
  • format: Output format - json, text, yaml, xml

get_index_recommendations

  • workload_queries: Optional list of specific queries to analyze
  • max_recommendations: Maximum recommendations (default: 10)
  • min_improvement_percent: Minimum improvement threshold (default: 10%)
  • include_hypothetical_testing: Test with HypoPG (default: true)
  • target_tables: Focus on specific tables

check_database_health

  • include_recommendations: Include actionable recommendations (default: true)
  • verbose: Include detailed statistics (default: false)

MCP Prompts

The server includes pre-defined prompt templates for guided tuning sessions:

Prompt Description
diagnose_slow_queries Systematic slow query investigation workflow
index_optimization Comprehensive index analysis and cleanup
health_check Full database health assessment
query_tuning Optimize a specific SQL query
performance_baseline Generate a baseline report for comparison

MCP Resources

Static Resources

  • pgtuner://docs/tools - Complete tool documentation
  • pgtuner://docs/workflows - Common tuning workflows guide
  • pgtuner://docs/prompts - Prompt template documentation

Dynamic Resource Templates

  • pgtuner://table/{schema}/{table_name}/stats - Table statistics
  • pgtuner://table/{schema}/{table_name}/indexes - Table index information
  • pgtuner://query/{query_hash}/stats - Query performance statistics
  • pgtuner://settings/{category} - PostgreSQL settings (memory, checkpoint, wal, autovacuum, connections, all)
  • pgtuner://health/{check_type} - Health checks (connections, cache, locks, replication, bloat, all)

PostgreSQL Extension Setup

HypoPG Extension

HypoPG enables testing indexes without actually creating them. This is extremely useful for:

  • Testing if a proposed index would be used by the query planner
  • Comparing execution plans with different index strategies
  • Estimating storage requirements before committing

Enable HypoPG in Database

HypoPG enables testing hypothetical indexes without creating them on disk.

-- Create the extension
CREATE EXTENSION IF NOT EXISTS hypopg;

-- Verify installation
SELECT * FROM hypopg_list_indexes();

pg_stat_statements Extension

The pg_stat_statements extension is required for query performance analysis. It tracks planning and execution statistics for all SQL statements executed by a server.

Step 1: Enable the Extension in postgresql.conf

Add the following to your postgresql.conf file:

# Required: Load pg_stat_statements module
shared_preload_libraries = 'pg_stat_statements'

# Required: Enable query identifier computation
compute_query_id = on

# Maximum number of statements tracked (default: 5000)
pg_stat_statements.max = 10000

# Track all statements including nested ones (default: top)
# Options: top, all, none
pg_stat_statements.track = top

# Track utility commands like CREATE, ALTER, DROP (default: on)
pg_stat_statements.track_utility = on

Note: After modifying shared_preload_libraries, a PostgreSQL server restart is required.

Step 2: Create the Extension in Your Database

-- Connect to your database and create the extension
CREATE EXTENSION IF NOT EXISTS pg_stat_statements;

-- Verify installation
SELECT * FROM pg_stat_statements LIMIT 1;

Performance Impact Considerations

Setting Overhead Recommendation
pg_stat_statements Low (~1-2%) Always enable
track_io_timing Low-Medium (~2-5%) Enable in production, test first
track_functions = all Low Enable for function-heavy workloads
pg_stat_statements.track_planning Medium Enable only when investigating planning issues
log_min_duration_statement Low Recommended for slow query identification

Tip: Use pg_test_timing to measure the timing overhead on your specific system before enabling track_io_timing.

Example Usage

Find and Analyze Slow Queries

# Get top 10 slowest queries
slow_queries = await get_slow_queries(limit=10, order_by="total_time")

# Analyze a specific query's execution plan
analysis = await analyze_query(
    query="SELECT * FROM orders WHERE user_id = 123",
    analyze=True,
    buffers=True
)

Get Index Recommendations

# Analyze workload and get recommendations
recommendations = await get_index_recommendations(
    max_recommendations=5,
    min_improvement_percent=20,
    include_hypothetical_testing=True
)

# Recommendations include CREATE INDEX statements
for rec in recommendations["recommendations"]:
    print(rec["create_statement"])

Database Health Check

# Run comprehensive health check
health = await check_database_health(
    include_recommendations=True,
    verbose=True
)

print(f"Health Score: {health['overall_score']}/100")
print(f"Status: {health['status']}")

# Review specific areas
for issue in health["issues"]:
    print(f"{issue}")

Find Unused Indexes

# Find indexes that can be dropped
unused = await find_unused_indexes(
    schema_name="public",
    include_duplicates=True
)

# Get DROP statements
for stmt in unused["recommendations"]:
    print(stmt)

Docker

docker pull  dog830228/pgtuner_mcp

# Streamable HTTP mode (recommended for web applications)
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  dog830228/pgtuner_mcp --mode streamable-http

# Streamable HTTP stateless mode (for serverless)
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  dog830228/pgtuner_mcp --mode streamable-http --stateless

# SSE mode (legacy web applications)
docker run -p 8080:8080 \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  dog830228/pgtuner_mcp --mode sse

# stdio mode (for MCP clients like Claude Desktop)
docker run -i \
  -e DATABASE_URI=postgresql://user:pass@host:5432/db \
  dog830228/pgtuner_mcp --mode stdio

Requirements

  • Python: 3.10+
  • PostgreSQL: 12+ (recommended: 14+)
  • Extensions:
    • pg_stat_statements (required for query analysis)
    • hypopg (optional, for hypothetical index testing)

Dependencies

Core dependencies:

  • mcp[cli]>=1.12.0 - Model Context Protocol SDK
  • psycopg[binary,pool]>=3.1.0 - PostgreSQL adapter with connection pooling
  • pglast>=7.10 - PostgreSQL query parser

Optional (for HTTP modes):

  • starlette>=0.27.0 - ASGI framework
  • uvicorn>=0.23.0 - ASGI server

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

About

provides AI-powered PostgreSQL performance tuning capabilities.

Resources

License

Stars

Watchers

Forks

Packages

No packages published