18
18
from typing import Any
19
19
import warnings
20
20
21
+ from jax ._src .api import device_put
21
22
from jax import numpy as jnp
22
23
from jax ._src import array
23
24
from jax ._src import xla_bridge
24
25
from jax ._src .lib import xla_client
25
26
from jax ._src .lib import xla_extension_version
26
27
from jax ._src .typing import Array
27
-
28
+ from jax . _src . sharding import Sharding
28
29
29
30
# A set of dtypes that dlpack supports.
30
31
# Note: Make sure to use a "type", not a dtype instance, when looking up this set
@@ -82,16 +83,112 @@ def to_dlpack(x: Array, take_ownership: bool = False,
82
83
x .addressable_data (0 ), stream = stream
83
84
) # type: ignore
84
85
86
+ def _place_array (_arr , device , dlpack_device , copy ):
87
+ if device and dlpack_device != device :
88
+ if copy is not None and not copy :
89
+ raise ValueError (
90
+ f"Specified { device = } which requires a copy since the source device "
91
+ f"is { repr (dlpack_device )} , however copy=False. Set copy=True or "
92
+ "copy=None to perform the requested operation."
93
+ )
94
+ else :
95
+ return device_put (_arr , device )
96
+ if copy :
97
+ return jnp .array (_arr , copy = True )
98
+ return _arr
99
+
100
+ def _legacy_from_dlpack (dlpack , device : xla_client .Device | None = None ,
101
+ copy : bool | None = None ):
102
+ preferred_platform = getattr (device , "platform" , None )
103
+ if device and preferred_platform == "gpu" :
104
+ preferred_platform = "cuda" if "cuda" in device .client .platform_version else "rocm"
105
+
106
+ cpu_backend = xla_bridge .get_backend ("cpu" )
107
+ gpu_backend = None
108
+
109
+ if preferred_platform in {"cuda" , "rocm" }:
110
+ try :
111
+ gpu_backend = xla_bridge .get_backend (preferred_platform )
112
+ except RuntimeError :
113
+ raise TypeError (
114
+ f"A { str .upper (preferred_platform )} device was specified, however no "
115
+ f"{ str .upper (preferred_platform )} backend was found."
116
+ )
85
117
86
- def from_dlpack (external_array ):
118
+ if preferred_platform is None :
119
+ try :
120
+ gpu_backend = xla_bridge .get_backend ("cuda" )
121
+ except RuntimeError :
122
+ pass
123
+ # Try ROCm if CUDA backend not found
124
+ if gpu_backend is None :
125
+ try :
126
+ gpu_backend = xla_bridge .get_backend ("rocm" )
127
+ except RuntimeError :
128
+ pass
129
+
130
+ _arr = jnp .asarray (xla_client ._xla .dlpack_managed_tensor_to_buffer (
131
+ dlpack , cpu_backend , gpu_backend )) # type: ignore
132
+
133
+ return _place_array (_arr , device , _arr .devices ().pop (), copy )
134
+
135
+ def _from_dlpack (external_array , device : xla_client .Device | None = None ,
136
+ copy : bool | None = None ):
137
+ dl_device_type , device_id = external_array .__dlpack_device__ ()
138
+ try :
139
+ dl_device_platform = {
140
+ DLDeviceType .kDLCPU : "cpu" ,
141
+ DLDeviceType .kDLCUDA : "cuda" ,
142
+ DLDeviceType .kDLROCM : "rocm" ,
143
+ }[dl_device_type ]
144
+ except TypeError :
145
+ # https://dmlc.github.io/dlpack/latest/python_spec.html recommends using
146
+ # TypeError.
147
+ raise TypeError (
148
+ "Array passed to from_dlpack is on unsupported device type "
149
+ f"(DLDeviceType: { dl_device_type } , array: { external_array } " )
150
+
151
+ backend = xla_bridge .get_backend (dl_device_platform )
152
+ dlpack_device = backend .device_from_local_hardware_id (device_id )
153
+ try :
154
+ stream = dlpack_device .get_stream_for_external_ready_events ()
155
+ except xla_client .XlaRuntimeError as err : # type: ignore
156
+ if "UNIMPLEMENTED" in str (err ):
157
+ stream = None
158
+ else :
159
+ raise
160
+ dlpack = external_array .__dlpack__ (stream = stream )
161
+
162
+ _arr = jnp .asarray (xla_client ._xla .dlpack_managed_tensor_to_buffer (
163
+ dlpack , dlpack_device , stream ))
164
+
165
+ return _place_array (_arr , device , dlpack_device , copy )
166
+
167
+ def from_dlpack (external_array ,
168
+ device : xla_client .Device | Sharding | None = None ,
169
+ copy : bool | None = None ):
87
170
"""Returns a :class:`~jax.Array` representation of a DLPack tensor.
88
171
89
- The returned :class:`~jax.Array` shares memory with ``external_array``.
172
+ The returned :class:`~jax.Array` shares memory with ``external_array`` if no
173
+ device transfer or copy was requested.
90
174
91
175
Args:
92
- external_array: an array object that has __dlpack__ and __dlpack_device__
176
+ external_array: An array object that has __dlpack__ and __dlpack_device__
93
177
methods, or a DLPack tensor on either CPU or GPU (legacy API).
94
178
179
+ device: The (optional) :py:class:`Device`, representing the device on which
180
+ the returned array should be placed. If given, then the result is committed
181
+ to the device. If unspecified, the resulting array will be unpacked onto the
182
+ same device it originated from. Setting ``device`` to a device different from
183
+ the source of ``external_array`` will require a copy, meaning ``copy`` must be
184
+ set to either ``True`` or ``None``.
185
+
186
+ copy: An (optional) boolean, controlling whether or not to a copy is performed.
187
+ If ``copy=True`` then a copy is always performed, even if unpacked onto the
188
+ same device. If ``copy=False`` then the copy is never peformed and will raise
189
+ an error if necessary. When ``copy=None`` then a copy may be performed if
190
+ needed for a device transfer.
191
+
95
192
Returns:
96
193
A jax.Array
97
194
@@ -102,49 +199,16 @@ def from_dlpack(external_array):
102
199
is later modified in-place, it may lead to undefined behavior when using
103
200
the associated JAX array.
104
201
"""
202
+ if isinstance (device , Sharding ):
203
+ device_set = device .device_set
204
+ if len (device_set ) > 1 :
205
+ raise ValueError (
206
+ "from_dlpack can only unpack a dlpack tensor onto a singular device, but "
207
+ f"a Sharding with { len (device_set )} devices was provided."
208
+ )
209
+ device = device_set .pop ()
105
210
if hasattr (external_array , "__dlpack__" ):
106
- dl_device_type , device_id = external_array .__dlpack_device__ ()
107
- try :
108
- device_platform = {
109
- DLDeviceType .kDLCPU : "cpu" ,
110
- DLDeviceType .kDLCUDA : "cuda" ,
111
- DLDeviceType .kDLROCM : "rocm" ,
112
- }[dl_device_type ]
113
- except TypeError :
114
- # https://dmlc.github.io/dlpack/latest/python_spec.html recommends using
115
- # TypeError.
116
- raise TypeError (
117
- "Array passed to from_dlpack is on unsupported device type "
118
- f"(DLDeviceType: { dl_device_type } , array: { external_array } " )
119
-
120
- backend = xla_bridge .get_backend (device_platform )
121
- device = backend .device_from_local_hardware_id (device_id )
122
- try :
123
- stream = device .get_stream_for_external_ready_events ()
124
- except xla_client .XlaRuntimeError as err : # type: ignore
125
- if "UNIMPLEMENTED" in str (err ):
126
- stream = None
127
- else :
128
- raise
129
- dlpack = external_array .__dlpack__ (stream = stream )
130
-
131
- return jnp .asarray (xla_client ._xla .dlpack_managed_tensor_to_buffer (
132
- dlpack , device , stream ))
133
- else :
134
- # Legacy path
135
- dlpack = external_array
136
- cpu_backend = xla_bridge .get_backend ("cpu" )
137
- try :
138
- gpu_backend = xla_bridge .get_backend ("cuda" )
139
- except RuntimeError :
140
- gpu_backend = None
141
-
142
- # Try ROCm if CUDA backend not found
143
- if gpu_backend is None :
144
- try :
145
- gpu_backend = xla_bridge .get_backend ("rocm" )
146
- except RuntimeError :
147
- gpu_backend = None
211
+ return _from_dlpack (external_array , device , copy )
148
212
149
- return jnp . asarray ( xla_client . _xla . dlpack_managed_tensor_to_buffer (
150
- dlpack , cpu_backend , gpu_backend ) )
213
+ # Legacy path
214
+ return _legacy_from_dlpack ( external_array , device , copy )
0 commit comments