This repository was archived by the owner on Oct 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_2.py
283 lines (225 loc) · 7.68 KB
/
chapter_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
Copyright Jeremy Nation <[email protected]>.
Licensed under the MIT license.
Almost entirely copied from code created by Sebastian Raschka, also licensed under the MIT license.
"""
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from visualization import plot_decision_regions
class AdalineGD(object):
def __init__(self, eta=0.01, n_iter=50):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
self.cost_ = []
for _ in range(self.n_iter):
output = self.net_input(X)
errors = y - output
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost_.append(cost)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return self.net_input(X)
def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, -1)
class AdalineSGD(object):
def __init__(self, eta=0.01, n_iter=10, shuffle=True):
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
def fit(self, X, y):
self._initialize_weights(X.shape[1])
self.cost_ = []
for _ in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = []
for x_i, target in zip(X, y):
cost.append(self._update_weights(x_i, target))
avg_cost = sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
if not self.w_initialized:
if len(X.shape) == 1:
m = X.shape[0]
else:
m = X.shape[1]
self._initialize_weights(m)
if y.ravel().shape[0] > 1:
for x_i, target in zip(X, y):
self._update_weights(x_i, target)
else:
self._update_weights(X, y)
return self
@staticmethod
def _shuffle(X, y):
r = np.random.permutation(len(y))
return X[r], y[r]
def _initialize_weights(self, m):
self.w_ = np.zeros(1+m)
self.w_initialized = True
def _update_weights(self, x_i, target):
output = self.net_input(x_i)
error = target - output
self.w_[1:] += self.eta * x_i.dot(error)
self.w_[0] += self.eta * error
cost = 0.5 * error**2
return cost
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
return self.net_input(X)
def predict(self, X):
return np.where(self.activation(X) >= 0.0, 1, -1)
class Perceptron(object):
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for x_i, target in zip(X, y):
update = self.eta * (target - self.predict(x_i))
self.w_[1:] += update * x_i
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
return np.where(self.net_input(X) >= 0.0, 1, -1)
def plot_adalinegd_results(X, y):
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))
ada1 = AdalineGD(eta=0.01, n_iter=10).fit(X, y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')
ada2 = AdalineGD(eta=0.0001, n_iter=10).fit(X, y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')
plt.show()
def plot_adalinesgd_different_online_results(X_std, y):
ada_no_online = AdalineSGD(eta=0.01, n_iter=1).fit(X_std, y)
plot_adalinesgd_results(
X_std,
y,
ada_no_online,
label='No Online',
show_cost=False,
)
starting_indexes = np.random.permutation(len(y))[:50]
ada_some_online = AdalineSGD(eta=0.01, n_iter=1).fit(
X_std[starting_indexes],
y[starting_indexes],
)
for index in range(len(y)):
if index not in starting_indexes:
x_i = X_std[index]
target = y[index]
ada_some_online = ada_some_online.partial_fit(x_i, target)
plot_adalinesgd_results(
X_std,
y,
ada_some_online,
label='Some Online',
show_cost=False,
)
ada_all_online = AdalineSGD(eta=0.01)
for x_i, target in zip(X_std, y):
ada_all_online = ada_all_online.partial_fit(x_i, target)
plot_adalinesgd_results(
X_std,
y,
ada_all_online,
label='All Online',
show_cost=False,
)
def plot_adalinesgd_results(X_std, y, clf=None, label=None, show_cost=True):
if clf is None:
clf = AdalineSGD(eta=0.01, n_iter=15).fit(X_std, y)
plot_decision_regions(X_std, y, classifier=clf)
title = "Adaline - Stochastic Gradient Descent%(label)s" % {
'label': '' if label is None else (" - %s" % label),
}
plt.title(title)
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
if show_cost:
plt.plot(range(1, len(clf.cost_) + 1), clf.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()
def plot_adalinegd_standardized_results(X_std, y):
ada = AdalineGD(eta=0.01, n_iter=15).fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.show()
def plot_iris_data(X, y):
plt.scatter(
X[:50, 0],
X[:50, 1],
color='red',
marker='o',
label='setosa',
)
plt.scatter(
X[50:100, 0],
X[50:100, 1],
color='blue',
marker='x',
label='versicolor',
)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()
def plot_perceptron_results(X, y):
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')
plt.show()
plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()
if __name__ == '__main__':
iris_data = datasets.load_iris()
y = iris_data['target'][0:100]
y = np.where(y == 0, -1, 1)
X = iris_data['data'][0:100][:, [0, 2]]
plot_iris_data(X, y)
# plot_perceptron_results(X, y)
# plot_adalinegd_results(X, y)
X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
# plot_adalinegd_standardized_results(X_std, y)
np.random.seed(1)
# plot_adalinesgd_results(X_std, y)
plot_adalinesgd_different_online_results(X_std, y)